Advertisement

Endocrine Pathology

, Volume 12, Issue 2, pp 189–254 | Cite as

Abstracts 8th International Pituitary Pathology Meeting October 5–9, 2001 Delphi and Athens Greece

Article
  • 59 Downloads

Keywords

Adenoma Growth Hormone Pituitary Adenoma Acromegaly Endocrine Pathology Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crock PA, Salvi M, Miller A, Wall J, Guyda H. Detection of Anti-pituitary Autoantibodies by Immunoblotting. J Immunol Meth 162:31–40, 1993.CrossRefGoogle Scholar
  2. 2.
    Crock PA. Cytosolic Autoantigens in Lymphocytic Hypophysitis. J Clin Endocrinol Metab 83:609–618, 1998.PubMedCrossRefGoogle Scholar

References

  1. 1.
    Fahlbusch R, Heigl Th, Huk W, Steinmeier R: The role of endoscopy and intraoperative MRI in transsphenoidal pituitary surgery, Elsevier 1996, p. 237–244.Google Scholar
  2. 2.
    Werder KV, Fahlbusch R (eds.): Pituitary adenomas from basic research to diagnosis and therapy, Elsevier 1996.Google Scholar
  3. 3.
    Fahlbusch R, Thapar K: New developments in pituitary surgical techniques, Baillière’s Clinical Endocrinology and Metabolism, Vol. 13, No. 3, pp. 471–484, 1999.PubMedGoogle Scholar

References

  1. 1.
    Dziuban SW, Jr. Using database information in your clinical practice. Ann Thorac Surg 68:350–352, 1999 (discussion 374–376).PubMedCrossRefGoogle Scholar
  2. 2.
    Cardenas A. Database management systems (2nd ed). Allyn and Bacon, 1985.Google Scholar
  3. 3.
    Date C. An introduction to database systems (5th ed, vol 1). Addison-Wesley, 1990.Google Scholar
  4. 4.
    Elmasri R, Navathe SB. Fundamentals of database systems. Addison-Wesley, 1994.Google Scholar

References

  1. 1.
    Oldfield EH, Chrousos GP, Schulte HM, Schaaf M, Mc Keever PE, Krudy AG, Cutler GB Jr, Loriaux DL, Doppman JL. Preoperative lateralization of ACTH-secreting pituitary microadenomas by bilateral and simultaneous inferior petrosal venous sinus sampling. N Engl J Med 312:100–103, 1985.PubMedCrossRefGoogle Scholar
  2. 2.
    Teramoto A, Nemoto S, Takakura K, Sasaki Y, Machida T. Selective venous sampling directly from cavernous sinus in Cushing’s syndrome. J Clin Endocrinol Metab 76:637–641, 1993.PubMedCrossRefGoogle Scholar
  3. 3.
    Doppman JL, Nieman LK, Chang R, Yanovski J, Cutler GB Jr, Chrousos GP, Oldfield EH. Selective venous sampling from the cavernous sinus is not a more reliable technique than sampling from the inferior petrosal sinuses in Cushing’s disease. J Clin Endocrinol Metab 80:2485–2489, 1995.PubMedCrossRefGoogle Scholar
  4. 4.
    Mamelak PN, Dowd CF, Tyrrell JB, McDonald JF, Wilson CB. Venous angiography is needed to interpret inferior petrosal sinus and cavernous sinus sampling data for lateralizing adrenocorticotropin-secreting adenomas. J Clin Endocrinol Metab 81:475–481, 1996.PubMedCrossRefGoogle Scholar
  5. 5.
    Miller DL, Doppman JL, Peterman SB, Nieman LK, Oldfield EH, Chang R. Neurologic complications of petrosal sinus sampling. Radiology 185:143–147, 1992.PubMedGoogle Scholar
  6. 6.
    Sturrock ND, Jeffcoate WJ. A neurological complication of inferior petrosal sinus sampling during investigation for Cushing’s disease:a case report. J Neurol Neurosurg Psychiatry 62:527–528, 1997.PubMedGoogle Scholar
  7. 7.
    Lüdecke DK. Intraoperative measurement of adrenocorticotropic hormone in peripituitary blood in Cushing’s disease. Neurosurgery 24:201–204, 1989.PubMedCrossRefGoogle Scholar
  8. 8.
    Laws ER Jr. Complications of surgery for ACTH secreting adenomas. In: Lüdecke DK, Chrousos GP, Tolis G (eds) ACTH, Cushing’s syndrome, and other hypercortisolemic states. Raven press, New York, 1990, pp. 275–280.Google Scholar
  9. 9.
    Knappe UK, Lüdecke DK. Persistent and recurrent hypercortisolism after transsphenoidal surgery for Cushing’s disease. Acta Neurochir (Wien) Suppl 65:31–34, 1995.Google Scholar
  10. 10.
    Ram Z, Nieman LK, Cutler GB Jr, Oldfield EH. Early repeat surgery for persistent Cushing’s disease. J Neurosurg 80:37–45, 1994.PubMedCrossRefGoogle Scholar
  11. 11.
    Hardy J. The surgical pathology of Cushing’s disease: Introduction. In: Lüdecke DK, Chrousos GP, Tolis G (eds) ACTH, Cushing’s syndrome, and other hypercortisolemic states. Raven press, New York, 1990, pp. 253–260.Google Scholar
  12. 12.
    Saeger W, Lüdecke DK, Geisler F. The anterior lobe in Cushing’s disease/syndrome. In: Lüdecke DK, Chrousos GP, Tolis G (eds) ACTH, Cushing’s syndrome, and other hypercortisolemic states. Raven press, New York, 1990, pp. 147–156.Google Scholar
  13. 13.
    Flitsch J, Knappe UJ, Lüdecke DK. Direct intraoperative micromethod for hormone measurements of pituitary tissue in Cushing’s disease. Surg Neurol 52:585–591, 1999.PubMedCrossRefGoogle Scholar
  14. 14.
    Flitsch J, Lüdecke DK, Knappe UJ, Saeger W. Correlates of long-term hypocortisolism after transsphenoidal microsurgery for Cushing’s disease. Exp Clin Endocrinol Diabetes 107:183–189, 1999.PubMedCrossRefGoogle Scholar
  15. 15.
    Lüdecke DK, Niedworok G. Results of microsurgery in Cushing’s disease. Cardiology 72:Suppl 1, 91–94.Google Scholar
  16. 16.
    Blevins LS, Christy JH, Khajavi M, Tindall GT. Outcomes of therapy for Cushing’s disease due to adrenocorticotropin-secreting pituitary macroadenomas. J Clin Endocrinol Metab 83:63–67, 1998.PubMedCrossRefGoogle Scholar
  17. 17.
    Losa M, Barzaghi RL, Mortini P, Franzin A, Mangili F, Terreni MR, Giovanelli M. Determination of the proliferation and apoptotic index in adrenocorticotropin-secreting pituitary tumors: comparison between micro- and macroadenomas. Am J Pathol 156:245–251, 2000.PubMedGoogle Scholar
  18. 18.
    Ikeda H, Yoshimoto T, Ogawa Y, Mizoi K, Murakami O. Clinico-pathological study of Cushing’s disease with large pituitary adenoma. Clin Endocrinol (Oxf.) 46:669–679, 1997.CrossRefGoogle Scholar
  19. 19.
    Saeger W, Lübke D. Pituitary carcinoma: a review. Endocr Pathol 7:21–35, 1996.PubMedGoogle Scholar
  20. 20.
    McCance DR, Besser M, Atkinson AB. Assessment of cure after transsphenoidal surgery for Cushing’s disease. Clin Endocrinol (Oxf.) 44:1–6, 1996.CrossRefGoogle Scholar
  21. 21.
    Jackson IM, Noren G. Role of gamma knife therapy in the management of pituitary tumors. Endocrinol Metab Clin North Am 1:133–142, 1999.CrossRefGoogle Scholar

References

  1. 1.
    Lledo PM, Vernier P, Vincent JD, Mason WT, Zorec R. Inhibition of Rab3B expression attenuates Ca(2+)-dependent exocytosis in rat anterior pituitary cells. Nature 364:540–544, 1993.PubMedCrossRefGoogle Scholar
  2. 2.
    Tahara S, Sanno N, Teramoto A, Osamura RY. Expression of Rab3, a Ras-related GTP-binding protein, in human nontumorous pituitaries and pituitary adenomas. Mod Pathol 12:627–634, 1999.PubMedGoogle Scholar

References

  1. 1.
    Scheithauer BW, Horvath E, Kovacs K, Lloyd RV. Histological Typing of Endocrine Tumors, World Health Organization, 15–29, 2000.Google Scholar
  2. 2.
    Chaidarun SS, Eggo MC, Sheppard MC, Stewart PM. Expression of epidermal growth factor (EGF), its receptor, and related oncoprotein (erbB-2) in human pituitary tumors and its response to EGF in vivo. Endocrinol 135:2012–2021, 1994.CrossRefGoogle Scholar
  3. 3.
    Ezzat S, Zheng L, Smyth HS, Asa SL. The c-erbB-2/neu proto-oncogene in human pituitary tumors. Clin Endocrinol 46:599–606,1997.CrossRefGoogle Scholar
  4. 4.
    NosÈ V, Mesquita MIS, Martins LC, Kayath MJ. Adrenocorticotrophin-producing pituitary carcinoma with expression of C-erbB-2/neu and high PCNA index: a comparative study with pituitary adenomas and normal pituitary tissues. Endocr Pathol 9:53–62,1998.Google Scholar
  5. 5.
    Slamon DJ, Clarck GM, Wong SG, Levin WJ, Ullrich A, Mc Guire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–82,1987.PubMedCrossRefGoogle Scholar
  6. 6.
    Jacobs TW, Gown AM, Yaziji H, Barnes MJ, Schnitt SJ. Comparison of fluorescent in situ hibridization and immunohistochemistry for the evaluation of Her-2/neu in breast cancer. J Clin Oncol 17:1974–1982,1999.PubMedGoogle Scholar
  7. 7.
    Tanner M, Gancberg D, DiLeo A, Larsimont D, Rouas G, Piccart MJ, Isola I. Chromogenic in situ hybridization: A practical alternative for fluorescent in situ hybridization to detect HER-2/neu oncogene amplification archival breast cancer samples. Am J Pathol 157:1467–1472, 2000.PubMedGoogle Scholar

References

  1. 1.
    Pagotto U, Arzberger T, Theodoropoulou M, Grubler Y, Pantaloni C, Saeger W, Losa M, Journot L, Stalla GK, Spengler D. The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning pituitary adenomas. Cancer Res 60:6794–6799, 2000.PubMedGoogle Scholar
  2. 2.
    Abdollahi, A, Bao R, Hamilton TC. LOT1 is a growth suppressor gene down-regulated by the epidermal growth factor receptor ligands and encodes a nuclear zinc-finger protein. Oncogene, 18: 6477–6487, 1999.PubMedCrossRefGoogle Scholar

References

  1. 1.
    Murai I and Ben-Jonathan N. Posterior pituitary lobectomy abolishes the suckling-induced rise in prolactin: evidence for a prolactin-releasing factor in postrior pituitary. Endocrinology 121:205–211,1987.PubMedGoogle Scholar
  2. 2.
    Ben-Jonathan. Regulation of prolactin secretion. In: The Pituitary Gland. Imura H (ed). Raven Press: New York, pp.261–283,1994.Google Scholar
  3. 3.
    Samnson WK and Shell DA. In: Oxytocin cellular and Molecular Approaches in Medicine and Research. Ivell and Rusell (eds). Plenum Press: New York, pp. 355–364,1995.Google Scholar
  4. 4.
    Murai I, Garris PA and Ben-Jonathan N. Time-dependent increase in plasma prolactin after pituitary stalk section. Endocrinology, 124:2343–2349,1989.PubMedGoogle Scholar
  5. 5.
    Frawley LS. Role of the hypophyseal neurointermediate lobe in the dinamic release of prolactin. Trends in Endocrinology and Metabolism. 5:107–112,1994CrossRefGoogle Scholar
  6. 6.
    Fagin KD, Wiener SG and Dallman MF. ACTH and corticosterone secretion in rats following removal of the neurointermediate lobe of the pituitary gland. Neuroendocrinology, 40:352–362,1985.PubMedGoogle Scholar
  7. 7.
    Makara GB. Kiss A, Lolait SJ and Aguilera G. Hypothalamic-pituitary corticotroph function after shunting of magnocellular vasopressin and oxytocin to the hypophyseal portal circulation, Endocrinology, 137:580–586,1996.PubMedCrossRefGoogle Scholar

References

  1. 1.
    Sautner D, Saeger W, Lüdecke DK. Tumors of the sellar region mimicking pituitary adenomas. Exp Clin Endocrinol 101:283–289, 1993.PubMedGoogle Scholar
  2. 2a.
    Stefaneanu L, Kovacs K. Light microscopic special stains and immunochemistry in the diagnosis of pituitary adenomas, in Lloyd RV (ed): Surgical Pathology of the Pituitary Gland. Philadelphia, W.B. Saunders Company, 1993, pp. 34–51.Google Scholar
  3. 3.
    Tallen G, Fehr S, Saeger W, Uhlig H, Lüdecke DK. Detection of growth hormone, prolactin and human β-chorionic gonadotropin mRNA in growth hormone-secreting pituitary adenomas by in situ-hybridization using a non-isotopic detection method. Acta Endocr (Kbh) 128:411–417, 1993.Google Scholar
  4. 4.
    Scheithauer BW, Horvath E, Lloyd RV, Kovacs K. Pathology of pituitary adenomas and pituitary hyperplasia, in Thapar K, Kovacs K, Scheithauer BW, Lloyd RV (eds): Diagnosis and management pituitary tumors. Totowa,NJ, Humana Press, 2001, pp. 91–154.Google Scholar
  5. 5.
    Schreiber S, Saeger W, Lüdecke DK. Proliferation markers in different types of clinically nonsecreting pituitary adenomas. Pituitary 1:213–220, 1999.PubMedCrossRefGoogle Scholar
  6. 6.
    Shibuya M, Saito F, Miwa T, Davis RL, Wilson CB, Hoshino T. Histochemical study of pituitary adenomas with Ki-67 and anti-DNA polymerase alpha monoclonal antibodies, bromodeoxyuridine labeling, and nucleolar organizer region counts. Acta Neuropath (Berlin) 84:178–183, 1992.CrossRefGoogle Scholar
  7. 7.
    Hsu DW, Hakim F, Biller BM, de la Monte S, Zervas NT, Klibanski A, Hedley WE. Significance of proliferating cell nuclear antigen index in predicting pituitary adenoma recurrence. J Neurosurg 78:753–761, 1993.PubMedGoogle Scholar
  8. 8.
    Thapar K, Scheithauer BW, Kovacs K, Pernicone PJ, Laws ER, Jr. p53 expression in pituitary adenomas and carcinomas: Correlation with invasiveness and tumor growth fractions. Neurosurgery 38:765–770, 1996.PubMedCrossRefGoogle Scholar
  9. 9.
    Cai WY, Alexander JM, Hedley-Whyte ET, Scheithauer BW, Jameson JL, Zervas NT, Klibanski A. Ras Mutations in Human Prolactinomas and Pituitary Carcinomas. J Clin Endocrinol Metab 78:89–93, 1994.PubMedCrossRefGoogle Scholar
  10. 10.
    Saeger W, Schreiber S, Lüdecke DK. Cyclins D1 and D3 and Topoisomerase IIa in inactive pituitary adenomas. Endocr Pathol (in press), 2001.Google Scholar
  11. 11.
    Terzolo M, Tappero G, Borretta G, Asnaghi G, Pia A, Reimondo G, Boccuzzi A, Cesario F, Rovero E, Paccotti P, Angeli A. High prevalence of colonic polyps in patients with acromegaly — Influence of sex and age. Arch Intern Med 154:1272–1276, 1994.12.PubMedCrossRefGoogle Scholar
  12. 12.
    Saeger W. Invited commentary: Expression of growth factors in normal and neoplastic pituitary tissues. Endocr Pathol (in press), 2000.Google Scholar

References

  1. 1.
    Knappe UJ, Hagel C, Lisboa BW, Lüdecke DK, Saeger W. Urikinase-type plasminogen activator is overexpressed in pituitary adenomas. Exper Clin Endocrinol Diabetes 108 Suppl. 1, S 5 Abstract Nr.vDo016, 2000.Google Scholar
  2. 2.
    Knappe UJ, Hagel C, Lisboa BW, Lüdecke B, Saeger W. Expression of urokinase, its receptor, and its inhibitor in human pituitary adenomas and anterior pituitary lobe. Zentralbl Neurochir Suppl 1, 43–44, 1999.Google Scholar

Copyright information

© Humana Press Inc 2001

Personalised recommendations