Endocrine

, Volume 29, Issue 1, pp 91–100 | Cite as

Modulation of fatty acid metabolism as a potential approach to the treatment of obesity and the metabolic syndrome

Article

Abstract

Increased de novo lipogenesis and reduced fatty acid oxidation are probable contributors to adipose accretion in obesity. Moreover, these perturbations have a role in leading to non-alcoholic steatohepatitis, dyslipidemia, and insulin resistance—via “lipotoxicity”-related mechanisms. Research in this area has prompted an effort to evaluated several discrete enzymes in these pathways as targets for future therapeutic intervention. Acetyl-CoA carboxylase 1 (ACC1) and ACC2 regulate fatty acid synthesis and indirectly control fatty acid oxidation via a key product, malonyl CoA. Based on mouse genetic and preclinical pharmacologic evidence, inhibition of ACC1 and/or ACC2 may be a useful approach to treat obesity and metabolic syndrome. Similarly, available data suggest that inhibition of other enzymes in this pathway, including fatty acid synthase, stearoyl CoA desaturase, and diacylglycerol acytransferase 1, will have beneficial effects. AMP-activated protein kinase is a master regulator of nutrient metabolism, which controls several aspects of lipid metabolism. Activation of AMPK in selected tissues is also a potential therapeutic approach. Inhibition of hormonesensitive lipase is another possible approach. The rationale for modulating the activity of these enzymes and their relative merits (and downsides) as possible therapeutic targets are further discussed.

Key Words

Fatty acid synthesis lipogenesis fatty acid oxidation insulin resistance obesity atherosclerosis dyslipidemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moller, D. E. and Kaufman K. D. (2005). Ann. Rev. Med. 56, 45–62.PubMedCrossRefGoogle Scholar
  2. 2.
    Lam, T. K. T., Schwartz, G. J., and Rossetti, L. (2005). Nature Neurosci. 8, 579–584.PubMedCrossRefGoogle Scholar
  3. 3.
    Donnelly, K., Smith, C., Schwarzenberg, S., et al. (2005). J. clin. Invest. 115, 1343–1351.PubMedCrossRefGoogle Scholar
  4. 4.
    Marques-Lopez, I., Ansorena, D., Astiasaran, I., et al. (2001). Am. J. Clin. Nutrition 73, 253–261.Google Scholar
  5. 5.
    Lowell, B. and Spiegelman, B. (2000). Nature 404, 652–660.PubMedGoogle Scholar
  6. 6.
    Bogardus, C., Lillioja, S., Ravussin, E., et al. (1986). N. Engl. J. Med. 315, 96–100.PubMedCrossRefGoogle Scholar
  7. 7.
    Ravussin, E. and Swinburn, B. (1996). Diabetes Rev. 4, 403–422.Google Scholar
  8. 8.
    Howard, B. and Howard, W. 1994). Endocrine Rev. 15, 263–274.CrossRefGoogle Scholar
  9. 9.
    Unger, R. (1995). Diabetes 44, 863–870.PubMedCrossRefGoogle Scholar
  10. 10.
    Berger, J. and Moller, D. E. (2002). Ann. Rey. Med. 53, 409–435.CrossRefGoogle Scholar
  11. 11.
    Zhou, G., Myers, R., Li, Y., et al. (2001). J. Clin. Invest. 108, 1167–1174.PubMedCrossRefGoogle Scholar
  12. 12.
    Abu-Elheiga, L., Brinkley, W. R., Zhong, L., et al. (2000). Proc. Natl. Acad. Sci. USA 97, 1444–1449.PubMedCrossRefGoogle Scholar
  13. 13.
    Bianchi, A., Evans, J. L., Iverson, A. J., et al. (1990). J. Biol. Chem. 265, 1502–1509.PubMedGoogle Scholar
  14. 14.
    Kim, K. H. (1997). Annu. Rev. Nutr. 17, 77–99.PubMedCrossRefGoogle Scholar
  15. 15.
    Abu-Elheiga, L., Matzuk, M. M., Kordari, P., et al. (2005). Proc. Natl. Acad. Sci. USA 102, 12011–12016.PubMedCrossRefGoogle Scholar
  16. 16.
    Winder, W. W., MacLean, P. S., Lucas, J. C., et al. (1995). J. Appl. Physiol. 78, 578–582.PubMedCrossRefGoogle Scholar
  17. 17.
    Vavvas, D., Apazidis, A., Saha, A. K., et al. (1997). J. Biol. Chem. 272, 13255–13261.PubMedCrossRefGoogle Scholar
  18. 18.
    Abu-Elheiga, L., Almarza-Ortega, D. B., Baldini, A., and Wakil, S. J. (1997). J. Biol. Chem. 272, 10669–10677.PubMedCrossRefGoogle Scholar
  19. 19.
    Abu-Elheija, L., Matzuk, M., Abo-Hasema, K., and Wakil, S. (2001). Science 291, 2613–2616.CrossRefGoogle Scholar
  20. 20.
    Abu-Elheiga, L., Oh, W., Kordari, P., and Wakil, S. J. (2003). Proc. Natl. Acad. Sci. USA 100, 10207–10212.PubMedCrossRefGoogle Scholar
  21. 21.
    Oh, W., Abu-Elheiga, L., Kordari, P., et al. (2005). Proc. Natl. Acad. Sci. USA 102, 1384–1389.PubMedCrossRefGoogle Scholar
  22. 22.
    McCune, S. A. and Harris R. A. (1979). J. Biol. Chem. 254, 10095–10101.PubMedGoogle Scholar
  23. 23.
    Arbeeny, C. M., Meyers, D. S., Bergquist, K. E., and Gregg, R. E. (1992). J. Lipid Res. 33, 843–851.PubMedGoogle Scholar
  24. 24.
    Fukuda, N. and Ontko, J. A. (1984). J. Lipid Res. 25, 831–842.PubMedGoogle Scholar
  25. 25.
    Parker, R. A., Kariya, T., Grisar, J. M., and Petrow, V. (1977). J. Med. Chem. 20, 781–791.PubMedCrossRefGoogle Scholar
  26. 26.
    Rose-Kahn, G. and Bar-Tana, J. (1990). Biochim. Biophys. Acta 1042, 259–264.PubMedGoogle Scholar
  27. 27.
    Tzur, R., Rose-Kahn, G., Adler, J. H., and Bar-Tana, J. (1988). Diabetes 37, 1618–1624.PubMedCrossRefGoogle Scholar
  28. 28.
    Groot, P. H., Pearce, N. J., and Gribble, A. D. (2003). Curr. Med. Chem.-Immun. Endoc. Metab. Agents 3, 211–217.CrossRefGoogle Scholar
  29. 29.
    Harwood, H. J. Jr., Petras, S. F., Shelly, L. D., et al. (2003). J. Biol. Chem. 278, 37099–37111.PubMedCrossRefGoogle Scholar
  30. 30.
    Harwood, H. J. Jr. (2005) Expert Opin. Ther. Targets 9, 267–281.PubMedCrossRefGoogle Scholar
  31. 31.
    Wakil, S. J. (1989). Biochemistry 28, 4523–4530.PubMedCrossRefGoogle Scholar
  32. 32.
    Ruderman, N. B., Saha, A. K., Vavas, D., and Witters, L. A. (1999). Am. J. Physiol. 276, E1-E18.PubMedGoogle Scholar
  33. 33.
    Chirala, S. S., Chang, H., Matzuk, M., et al. (2003). Proc. Natl. Acad. Sci. USA 100, 6358–6363.PubMedCrossRefGoogle Scholar
  34. 34.
    Pan, D. A., Lillioja, S., Kriketos, A. D., et al. (1997). Diabetes 46, 983–988.PubMedCrossRefGoogle Scholar
  35. 35.
    Loftus, T. M., Jaworsky, D. E., Frehywot, G. L., et al. (2000). Science 288, 2379–2381.PubMedCrossRefGoogle Scholar
  36. 36.
    Shimokawa, T., Kumar, M. V., and Lane, M. D. (2002). Proc. Natl. Acad. Sci. USA 99, 66–71.PubMedCrossRefGoogle Scholar
  37. 37.
    Thupari, J. N., Landree, L. E., Ronnett, G. V., and Kuhajda, F. P. (2002). Proc. Natl. Acad. Sci. USA 99, 9498–9502.PubMedGoogle Scholar
  38. 38.
    Hardie, D., Carling, D., and Carlson, M. (1998). Ann. Rev. Biochem. 67, 821–855.PubMedCrossRefGoogle Scholar
  39. 39.
    Winder, W. and Hardie, D. (1999). Am. J. Physiol. 40, E1-E10.Google Scholar
  40. 40.
    Minokoshi, Y., Kim, T-B., Peroni, O., et al. (2002). Nature 415, 339–343.PubMedCrossRefGoogle Scholar
  41. 41.
    Yamauchi, T., Kamon, J., Ito, Y., et al. (2003). Nature 423, 762–769.PubMedCrossRefGoogle Scholar
  42. 42.
    Ruderman, N., Saha, A., and Kraegen, E. (2003). Endocrinology 144, 5166–5171.PubMedCrossRefGoogle Scholar
  43. 43.
    Winder, W., Holmes, B., Rubink, D., et al. (2000). J. Appl. Physiol. 88, 2219–2226.PubMedGoogle Scholar
  44. 44.
    Minokoshi, Y., Alqular, T., Furukawa, N., et al. (2004). Nature 428, 569–574.PubMedCrossRefGoogle Scholar
  45. 45.
    Andersson, U., Filipsson, K., Abbott, C., et al. (2004). J. Biol. Chem. 279, 12005–12008.PubMedCrossRefGoogle Scholar
  46. 46.
    Enoch, H. G. and Strittmatter, P. (1978). Biochemistry 17, 4927–4932.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang, J., Yu, L., Schmidt, R. E., et al. (2005). Biochem. Biophys. Res. Commun. 332, 735–742.PubMedCrossRefGoogle Scholar
  48. 48.
    Ntambi, J. M. and Miyazaki, M. (2003). Curr. Opin. Lipidol. 14, 255–261.PubMedCrossRefGoogle Scholar
  49. 49.
    Miyazaki, M., Jacobson, M. J., Man, W. C., et al. (2003). J. Biol. Chem. 278, 33904–33911.PubMedCrossRefGoogle Scholar
  50. 50.
    Miyazaki, M., Kim, Y. C., Gray-Keller, M. P., et al. (2000). J. Biol. Chem. 275, 30132–30138.PubMedCrossRefGoogle Scholar
  51. 51.
    Miyazaki, M., Kim, Y. C., and Ntambi, J. M. (2001). J. Lipid Res. 42, 1018–1025.PubMedGoogle Scholar
  52. 52.
    Cohen, P., Miyazaki, M., Socci, N. D., et al. (2002). Science 297, 240–243.PubMedCrossRefGoogle Scholar
  53. 53.
    Miyazaki, M., Man, W. C., and Ntambi, J. M. (2001). J. Nutr. 131, 2260–2268.PubMedGoogle Scholar
  54. 54.
    Ntambi, J. M., Miyazaki, M., Stoehr, J. P., et al. (2002). Proc. Natl. Acad. Sci. USA 99, 11482–11486.PubMedCrossRefGoogle Scholar
  55. 55.
    Dobrzyn, P., Dobrzyn, A., Miyazaki, M., et al. (2004). Proc. Natl. Acad. Sci. USA 101, 6409–6414.PubMedCrossRefGoogle Scholar
  56. 56.
    Miyazaki, M., Dobrzyn, A., Sampath, H., et al. (2004). J. Biol. Chem. 279, 35017–35024.PubMedCrossRefGoogle Scholar
  57. 57.
    Jiang, G., Li, Z., Liu, F., et al. (2005). J. Clin. Invest. 115, 1030–1038.PubMedCrossRefGoogle Scholar
  58. 58.
    Sviridov, S., Kodumuru, V., Liu, S., et al. (2005). Patent No. WO 2005011657.Google Scholar
  59. 59.
    Fredrikson, G., Stralfors, P., Nilsson, N. O., and Belfrage, P. (1981). Methods Enzymol. 71 (Pt C), 636–646.PubMedGoogle Scholar
  60. 60.
    Eriksson, H., Ridderstrale, M., Degerman, E., et al. (1995). Biochim. Biophys. Acta 1266, 101–107.PubMedCrossRefGoogle Scholar
  61. 61.
    Osuga, J, Ishibashi, S., Oka, T., et al. (2000). Proc. Natl. Acad. Sci. USA 97, 787–792.PubMedCrossRefGoogle Scholar
  62. 62.
    Haemmerle, G., Zimmermann, R., Hayn, M., et al. (2002). J. Biol. Chem. 277, 4806–4815.PubMedCrossRefGoogle Scholar
  63. 63.
    Haemmerle, G., Zimmermann, R., Strauss, J. G., et al. (2002). J. Biol. Chem. 277, 12946–12952.PubMedCrossRefGoogle Scholar
  64. 64.
    Voshol, P. J., Haemmerle, G., Ouwens, D. M., et al. (2003). Endocrinology 144, 3456–3462.PubMedCrossRefGoogle Scholar
  65. 65.
    Park, S. Y., Kim, H. J., Wang, S., et al. (2005). Am. J. Physiol. Endocrinol. Metab. 289, E30–39.PubMedCrossRefGoogle Scholar
  66. 66.
    Wang, S. P., Laurin, N., Himms-Hagen, J., et al. (2001). Obes. Res. 9, 119–128.PubMedCrossRefGoogle Scholar
  67. 67.
    Harada, K., Shen, W. J., Patel, S., et al. (2003). Am. J. Physiol. Endocrinol. Metab. 285, E1182–1195.PubMedGoogle Scholar
  68. 68.
    Zimmermann, R., Haemmerle, G., Wagner,E. M., et al. (2003). J. Lipid Res. 44, 2089–2099.PubMedCrossRefGoogle Scholar
  69. 69.
    Sekiya, M., Osuga, J., Okazaki, H., et al. (2004). J. Biol. Chem. 279, 15084–15090.PubMedCrossRefGoogle Scholar
  70. 70.
    Zechner, R., Strauss, J. G., Haemmerle, G., et al. (2005). Curr. Opin. Lipidol. 16, 333–340.PubMedCrossRefGoogle Scholar
  71. 71.
    Yu, Y. H. and Ginsberg, H. N. (2004). Ann. Med. 36, 252–261.PubMedCrossRefGoogle Scholar
  72. 72.
    Farese, R. V. Jr., Cases, S., and Smith, S. J. (2000). Curr. Opin. Lipidol. 11, 229–234.PubMedCrossRefGoogle Scholar
  73. 73.
    Cheng, D., Meegalla, R. L., He, B., et al. (2001). Biochem. J. 359, 707–714.PubMedCrossRefGoogle Scholar
  74. 74.
    Cases, S., Smith, S. J., Zheng, Y. W., et al. (1998). Proc. Natl. Acad. Sci. USA 95, 13018–13023.PubMedCrossRefGoogle Scholar
  75. 75.
    Smith, S. J., Cases, S., Jensen, D. R., et al. (2000). Nat. Genet. 25, 87–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Chen, H. C., Smith, S. J., Ladha, Z., et al. (2002). J. Clin. Invest. 109, 1049–1055.PubMedCrossRefGoogle Scholar
  77. 77.
    Chen, H. C., Jensen, D. R., Myers, H. M., et al. (2003). J. Clin. Invest. 111, 1715–1722.PubMedCrossRefGoogle Scholar
  78. 78.
    Chen, H. C., Rao, M., Sajan, M. P., et al. (2004). Diabetes 53, 1445–1451.PubMedCrossRefGoogle Scholar
  79. 79.
    Chen, H. C., Smith, S. J., Tow, B., et al. (2002). J. Clin. Invest. 109, 175–181.PubMedCrossRefGoogle Scholar
  80. 80.
    Yu, X. X., Murray, S. F., Pandey, S. K., et al. (2005). Hepatology 42, 362–371.PubMedCrossRefGoogle Scholar
  81. 81.
    Stone, S. J., Myers, H. M., Watkins, S. M., et al. (2004). J. Biol. Chem. 279, 11767–11776.PubMedCrossRefGoogle Scholar
  82. 82.
    Pearce, N. J., Yates, J. W., Berkhout, T. A., et al. (1998). Biochem. J. 334 (Pt 1), 113–119.PubMedGoogle Scholar
  83. 83.
    Beigneux, A. P., Kosinski, C., Gavino, B., et al. (2004). J. Biol. Chem. 279, 9557–9564.PubMedCrossRefGoogle Scholar
  84. 84.
    Coleman, R. A., Lewin, T. M., and Muoio, D. M. (2000). Annu. Rev. Nutr. 20, 77–103.PubMedCrossRefGoogle Scholar
  85. 85.
    Gonzalez-Baro, M. R., Granger, D. A., and Coleman, R. A. (2001). J. Biol. Chem. 276, 43182–43188.PubMedCrossRefGoogle Scholar
  86. 86.
    Muoio, D. M., Seefeld, K., Witters, L. A., and Coleman, R. A. (1999). Biochem. J. 338 (Pt 3), 783–791.PubMedCrossRefGoogle Scholar
  87. 87.
    Hammond, L. E., Gallagher, P. A., Wang, S., et al. (2002). Mol. Cell. Biol. 22, 8204–8214.PubMedCrossRefGoogle Scholar
  88. 88.
    Neschen, S., Morino, K., Hammond, L. E., et al. (2005). Cell Metab. 2, 55–65.PubMedCrossRefGoogle Scholar
  89. 89.
    Lehner, R. and Kuksis, A. (1996). Prog. Lipid Res. 35, 169–201.PubMedCrossRefGoogle Scholar
  90. 90.
    Cao, J., Lockwood, J., Burn, P., and Shi, Y. (2003). J. Biol. Chem. 278, 13860–13866.PubMedCrossRefGoogle Scholar
  91. 91.
    Cao, J., Hawkins, E., Brozinick, J. et al. (2004). J. Biol. Chem. 279, 18878–18886.PubMedCrossRefGoogle Scholar
  92. 92.
    Luan, Y., Hirashima, T., Man, Z. W., et al. (2002). Diabetes Res. Clin. Pract. 57, 75–82.PubMedCrossRefGoogle Scholar
  93. 93.
    IDF Worldwide Definition of the Metabolic Syndrome. (1995) www.idf.org.Google Scholar
  94. 94.
    Cortez-Pinto, H. and Camilo, M. (2004). Best Practice Res. Clin. Gastroenterol. 18, 1089–1104.CrossRefGoogle Scholar
  95. 95.
    Harwood, H. Jr. (2004). Curr. Opin. Invest. Drugs 5, 283–289.Google Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  1. 1.Department of Metabolic Disorders, Tsukuba Research InstituteBanyu Pharmaceutical Co., Ltd.IbarakiJapan
  2. 2.Endocrine-Cardiovascular DivisionLilly Research LaboratoriesIndianapolis

Personalised recommendations