Endocrine

, Volume 27, Issue 2, pp 179–188 | Cite as

Putting cancer to sleep at night

The neuroendocrine/circadian melatonin signal
  • David E. Blask
  • Robert T. Dauchy
  • Leonard A. Sauer
Article

Abstract

Physiological and pharmacological blood concentrations of melatonin inhibit tumorigenesis in a variety of in vivo and in vitro experimental models of neoplasia. Evidence indicates that melatonin’s anticancer effects are exerted via inhibition of cell proliferation and a stimulation of differentiation and apoptosis. A new mechanism by which physiological and pharmacological blood levels of melatonin inhibit cancer growth in vivo is via a melatonin-induced suppression of tumor linoleic acid (LA) uptake and its metabolism to the important mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Melatonin suppresses cAMP formation and inhibits tumor uptake of LA and its metabolism to 13-HODE via a melatonin receptor-mediated mechanism in both tissue-isolated rat hepatoma 7288 CTC and human breast cancer xenografts. It has been postulated that in industrialized societies, light at night, by suppressing melatonin production, poses a new risk for the development of breast cancer and, perhaps, other cancers as well. In support of this hypothesis, light during darkness suppresses nocturnal melatonin production and stimulates the LA metabolism and growth of rat hepatoma and human breast cancer xenografts. Nocturnal dietary supplementation with melatonin, at levels contained in a melatonin-rich diet, inhibits rat hepatoma growth via the mechanisms described above. The nocturnal melatonin signal organizes tumor metabolism and growth within circadian time structure that can be further reinforced by appropriately timed melatonin supplementation. Dietary melatonin supplementation working in concert with the endogenous melatonin signal has the potential to be a new preventive/therapeutic strategy to optimize the host/cancer balance in favor of host survival and quality of life.

Key Words

Melatonin pineal gland circadian rhythm cancer growth linoleic acid metabolism host/cancer balance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marte, B. (2004). Nature 432, 293.CrossRefGoogle Scholar
  2. 2.
    Massagué, J. (2004). Nature 432, 298–306.PubMedCrossRefGoogle Scholar
  3. 3.
    Lowe, S. W., Cepero, E., and Evan, G. (2004). Nature 432, 307–315.PubMedCrossRefGoogle Scholar
  4. 4.
    Kastan, M. D. and Bartek, J. (2004). Nature 432, 316–323.PubMedCrossRefGoogle Scholar
  5. 5.
    Beachy, P. A., Karhadka, S. S., and Berman, D. M. (2004). Nature 432, 324–331.PubMedCrossRefGoogle Scholar
  6. 6.
    Rajagopalan, H. and Lengauer, C. (2004). Nature 432, 338–341.PubMedCrossRefGoogle Scholar
  7. 7.
    Hrushesky, W. J. M. (1994). The Sciences. July/August, 32–37.Google Scholar
  8. 8.
    Cooper, Z. K. and Schiff, A. (1938). Proc. Soc. Exp. Biol. Med. 39, 323–352.Google Scholar
  9. 9.
    Dubin, W. B., Gregg, R. O., and Broders, A. C. (1940). Arch. Pathol. 30, 893–911.Google Scholar
  10. 10.
    Scheving, L. E., Burns, E. R., and Pauly, J. E. (1972). Am. J. Anat. 135, 311–317.PubMedCrossRefGoogle Scholar
  11. 11.
    Hrushesky, W. J. M. (2000). Jpn. J. Clin. Oncol. 30, 529–533.PubMedCrossRefGoogle Scholar
  12. 12.
    Hrushesky, W. J. (2001). Control Release 74, 27–30.CrossRefGoogle Scholar
  13. 13.
    Wood, P. A. and Hrushesky, W. J. M. (1996). Crit. Rev. Eukaryot. Gene Expr. 6, 299–343.PubMedGoogle Scholar
  14. 14.
    Fu, L. and Lee, C. C. (2003). Nat. Rev. 3, 350–361.Google Scholar
  15. 15.
    Canaple, L., Kakizawa, T., and Laudet, V. (2003). Cancer Res. 63, 7545–7552.PubMedGoogle Scholar
  16. 16.
    Zhu, Y., Brown, H. N., Chang, Y., Stevens, R. G., and Zheng, T. (2005). Cancer Epidemiol. Biomarkers Prev. 14, 268–270.PubMedGoogle Scholar
  17. 17.
    Reiter, R. J. (1991). Trends Endocrinol. Metab. 2, 13–19.CrossRefPubMedGoogle Scholar
  18. 18.
    Reiter, R. J. (1994). Lab. Med. 25, 436–441.Google Scholar
  19. 19.
    Blask, D. E. (2001). In: The pineal gland and cancer. Bartsch, C., Bartsch, H., Blask, D. E., Cardinali, D. P., Hrushesky, W. J. M., and Mecke, D. (eds.). Springer-Verlag: Berlin, pp. 309–342.Google Scholar
  20. 20.
    Blask, D. E., Sauer, L. A., and Dauchy, R. T. (2002). Curr. Topics Med. Chem. 2, 113–132.CrossRefGoogle Scholar
  21. 21.
    Vijayalaxmi, Thomas, C. R., Reiter, R. J., and Herman, T. S. (2002). J. Clin. Oncol. 20, 2575–2601.PubMedCrossRefGoogle Scholar
  22. 22.
    Sauer, L. A., Dauchy, R. T., and Blask, D. E. (2001). Biochem. Pharmacol. 61, 1455–1462.PubMedCrossRefGoogle Scholar
  23. 23.
    Reyes, N., Reyes, I., Tiwari, R., and Geliebter, J. (2004). Cancer Lett. 209, 25–35.PubMedCrossRefGoogle Scholar
  24. 24.
    Glasgow, W. C., Hui, R., Everhart, A. L., et al. (1997). J. Biol. Chem. 272, 19269–19276.PubMedCrossRefGoogle Scholar
  25. 25.
    Hsi, L. C., Wilson, L. C., and Eling, T. E. (2002). J. Biol. Chem. 277, 40549–40556.PubMedCrossRefGoogle Scholar
  26. 26.
    Guillino, P. M. (1961). Fed. Proc. 20, 153.Google Scholar
  27. 27.
    Sauer, L. A., Stayman, J. W. III, and Dauchy, R. T. (1982). Cancer Res. 42, 4090–4097.PubMedGoogle Scholar
  28. 28.
    Dauchy, R. T. and Sauer, L. A. (1986). Lab. Anim. Sci. 36, 678–681.PubMedGoogle Scholar
  29. 29.
    Sauer, L. A. and Dauchy, R. T. (1994). Metabolism 43, 1488–1497.PubMedCrossRefGoogle Scholar
  30. 30.
    Sauer, L. A., Dauchy, R. T., and Blask, D. E. (1997). J. Nutr. 127, 1412–1421.PubMedGoogle Scholar
  31. 31.
    Sauer, L. A. and Dauchy, R. T. (1992). Br. J. Cancer 66, 290–296.PubMedGoogle Scholar
  32. 32.
    Blask, D. E., Sauer, L. A., Dauchy, R. T., Holowachuk, E. W., Ruhoff, M. S., and Kopff, H. S. (1999). Cancer Res. 59, 463–470.Google Scholar
  33. 33.
    Blask, D. E., Dauchy, R. T., Sauer, L. A., and Krause, J. A. (2004). Carcinogenesis 25, 951–960.PubMedCrossRefGoogle Scholar
  34. 34.
    Blask, D. E., Dauchy, R. T., Sauer, L. A., Krause, J. A., and Davidson, L. K. (2003). Amer. Assoc. Cancer Res. 44, Abst. 549, 26.Google Scholar
  35. 35.
    Sauer, L. A., Dauchy, R. T., and Blask, D. E. (2001). Life Sci. 68, 2835–2844.PubMedCrossRefGoogle Scholar
  36. 36.
    Dauchy, R. T., Blask, D. E., Sauer, L. A., et al. (2003). Comp. Med. 53, 186–190.PubMedGoogle Scholar
  37. 37.
    Blask, D. E., Brainard, G. C., McGowan, T., and Kesselring, J. (2004). EPRI 1011162. Palo Alto, CA, and McClung Foundation, Conyers, GA, pp. 1–46.Google Scholar
  38. 38.
    Dauchy, R. T., Blask, D. E., Sauer, L. A., and Vaughan, G. M. (1997). Lab. Anim. Sci. 47, 511–518.PubMedGoogle Scholar
  39. 39.
    Dauchy, R. T., Blask, D. E., Sauer, L. A., Brainard, G. C., and Krause, J. A. (1999). Cancer Lett. 144, 131–136.PubMedCrossRefGoogle Scholar
  40. 40.
    Blask, D. E., Dauchy, R. T., Sauer, L. A., Krause, J. A., and Brainard, G. C. (2002). Neuroendocrinol. Lett. 23, 52–56.PubMedGoogle Scholar
  41. 41.
    Blask, D. E., Dauchy, R. T., Sauer, L. A., Krause, J. A., and Brainard, G. C. (2003). Breast Cancer Res. Treat. 79, 313–320.PubMedCrossRefGoogle Scholar
  42. 42.
    Dauchy R. T., Blask, D. E., Brainard, G. C., et al. (2003). Contemp. Top. Lab. Animal Sci. 42, P058, 101.Google Scholar
  43. 43.
    Hansen, J. (2001). Epidemiology 12, 74–77.PubMedCrossRefGoogle Scholar
  44. 44.
    Davis, S., Mirick, D. K., and Stevens, R. G. (2001). J. Natl. Cancer Inst. 93, 1557–1562.PubMedCrossRefGoogle Scholar
  45. 45.
    Hardeland, R. (1999). Reprod. Nutr. Dev. 39, 399–408.PubMedGoogle Scholar
  46. 46.
    Dubbels, R., Reiter, R. J., Klenke, E., et al. (1995). J. Pineal Res. 18, 28–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Reiter, R. J., Tan, D. X., Burkhardt, S., and Manchester, L. C. (2001). Nutr. Rev. 59, 286–290.PubMedCrossRefGoogle Scholar
  48. 48.
    Hattori, A., Migtitaka, H., Iigo, M., et al. (1995). Biochem. Mol. Biol. Intl. 35, 627–634.Google Scholar
  49. 49.
    Tan, D. X., Manchester, L. C., Hardeland, et al. (2003). J. Pineal Res. 34, 75–78.PubMedCrossRefGoogle Scholar
  50. 50.
    Lerner, A. B. (1999). In: Melatonin after four decades, advances in experimental medicine and biology. Olcese, J. (ed.). Kluwer Acad./Plenum Pub.: New York, vol. 460, pp. 1–3.Google Scholar
  51. 51.
    DeMuro, R. L., Nafziger, A. N., Blask, D. E., Menhinick, A. M., and Bertino, J. (2000). J. Clin. Pharmacol. 40, 781–784.PubMedCrossRefGoogle Scholar
  52. 52.
    Di, W. L., Kadva, A., Johnston, A., and Silman, R. (1997). N. Engl. J. Med. 336, 1028–1029.PubMedCrossRefGoogle Scholar
  53. 53.
    Dollins, A. B., Zhdanova, I. V., Wurtman, R. J., Lynch, H. J., and Deng, M. H. (1994). Proc. Natl. Acad. Sci. USA 91, 1824–1828.PubMedCrossRefGoogle Scholar
  54. 54.
    Audinot, V., Mailliet, F., Lahaye-Brasseur, C., et al. (2003). Arch. Pharmacol. 367, 553–561.CrossRefGoogle Scholar
  55. 55.
    Maestroni, G. J. M. and Conti, A. (1996). Lab. Invest. 75, 557–561.PubMedGoogle Scholar
  56. 56.
    Messner, M., Hardeland, R., Rodenbeck, A., and Huether, G. (1998). J. Pineal Res. 24, 146–151.PubMedCrossRefGoogle Scholar
  57. 57.
    Dubocovich, M. L., Rivera-Bermudez, M. A., Gerdin, M. J., and Masana, M. I. (2003). Front. Biosci. 8, 1093–1108.CrossRefGoogle Scholar
  58. 58.
    Dauchy, R. T., Blask, D. E., Sauer, L. A., Davidson, L. K., and Krause, J. A. (2003). Amer. Assoc. Cancer Res. 44, Abst. 548, 126.Google Scholar
  59. 59.
    Hill, S. M., Ram, P. T., Molis, T. M., and Spriggs, L. L. (1998). In: Melatonin in psychiatric and neoplastic disorders. Shafii, M. and Shafi, S. L. (eds.). Amer. Psychiat. Press: Washington, DC, pp. 191–241.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • David E. Blask
    • 1
  • Robert T. Dauchy
    • 1
  • Leonard A. Sauer
    • 1
  1. 1.Laboratory of Chrono-Neuroendocrine OncologyBassett Research InstituteCooperstown

Personalised recommendations