Endocrine

, Volume 27, Issue 2, pp 159–168 | Cite as

Melatonin and nitric oxide

Two required antagonists for mitochondrial homeostasis
  • Darío Acuña-Castroviejo
  • Germaine Escames
  • Luis C. López
  • Ana B. Hitos
  • Josefa León
Article

Abstract

The presence of nitric oxide (NO·) in the mitochondria led to analysis of its source and functions in mitochondrial homeostasis. Studies have revealed the existence of a mtNOS isoform with similar features to nNOS, with some post-traslational modifications, although without the typical signal peptide responsible for addressing proteins to mitochondrion. This isoform may account for the physiological production of NO· related to the respiratory control. During inflammatory conditions there is an excess of NO· in the mitochondria responsible for an increase in reactive oxygen and nitrogen species in sufficient amounts to compromise mitochondrial function. These conditions led to the discovery of the presence of an inducible mtNOS isoform with kinetic properties similar to iNOS. Experiments with knockout mice lacking either nNOS or iNOS further confirmed the existence of these two mtNOS isoforms in mitochondria. Although the increase in NO· in sepsis by inducible mtNOS may have important regulatory functions including the redistribution of oxygen into other pathways under hypoxia, it causes the production of excess NO· that is deleterious for the cell. Melatonin, an endogenous antioxidant, regulates mitochondrial respiration and bioenergetics and protects mitochondria from excess NO· by controlling the activity of mtNOS.

Key Words

Melatonin nitric oxide mitochondrial nitric oxide synthase mitochondria respiratory chain ATP oxidative stress sepsis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mitchell, P. and Moyle, J. (1967). Nature 213, 137–139.PubMedCrossRefGoogle Scholar
  2. 2.
    Lee, I., Bender, E., Arnold, S., and Kadenbach, B. (2001). J. Biol. Chem. 382, 1629–1636.CrossRefGoogle Scholar
  3. 3.
    Brookes, P. S. (2005). Free Rad. Biol. Med. 38, 2–23.CrossRefGoogle Scholar
  4. 4.
    Ghafourifar, P. and Richter, C. (1997). FEBS Lett. 418, 291–296.PubMedCrossRefGoogle Scholar
  5. 5.
    Kanai, A. J., Pearce, L. L., Clemens, P. R., et al. (2001). Proc. Natl Acad. Sci. USA 98, 14126–14131.PubMedCrossRefGoogle Scholar
  6. 6.
    Radi, R., Cassina, A., Hodara, R., Quijano, C., and Castro, L. (2002). Free Rad. Biol. Med. 33, 1451–1464.PubMedCrossRefGoogle Scholar
  7. 7.
    Brookes, P. S. (2004). Mitochondrion 3, 187–204.PubMedCrossRefGoogle Scholar
  8. 8.
    Kobzik, L., Stringer, B., Balligand, J. L., Reid, M. B., and Stamler, J. S. (1995). Biochem. Biophys. Res. Commun. 211, 375–381.PubMedCrossRefGoogle Scholar
  9. 9.
    Bates, T. E., Loesch, A., Burnstock, G., and Clark, J. B. (1995). Biochem. Biophys. Res. Commun. 213, 896–900.PubMedCrossRefGoogle Scholar
  10. 10.
    Giulivi, C., Poderoso, J. J., and Boveris, A. (1998). J. Biol. Chem. 273, 11038–11043.PubMedCrossRefGoogle Scholar
  11. 11.
    Elfering, S. L., Sarkela, T. M., and Giulivi, C. (2002). J. Biol. Chem. 277, 38079–38086.PubMedCrossRefGoogle Scholar
  12. 12.
    Tatoyan, A. and Giulivi, C. (1998). J. Biol. Chem. 273, 11044–11048.PubMedCrossRefGoogle Scholar
  13. 13.
    Haynes, V. H., Elfering, S., Traaseth, N., and Giulivi, C. (2004). J. Bioenerg. Biomem. 36, 341–346.CrossRefGoogle Scholar
  14. 14.
    Nohl, H., Staniek, K., Sobhian, B., Bahrami, S., Redl, H., and Kozlov, A.V., (2000). Acta Biochim. Pol. 47, 913–921.PubMedGoogle Scholar
  15. 15.
    Escames, G., León, J., Macías, M., Khaldy, H., and Acuña-Castroviejo, D. (2003). FASEB J. 17, 932–934.PubMedGoogle Scholar
  16. 16.
    López, L. C., Escames, G., Utrilla, P., et al. (2005). J. Physiol. Biochem. 61, 294.Google Scholar
  17. 17.
    Boveris, A., Álvarez, S., and Navarro, A. (2002). Free Radic. Biol. Med. 33, 1186–1193.PubMedCrossRefGoogle Scholar
  18. 18.
    Alvarez, S. and Boveris, A. (2004). Free Radic. Biol. Med. 37, 1472–1478.PubMedCrossRefGoogle Scholar
  19. 19.
    Cadenas, E., Poderoso, J. J., Antunes, F., and Boveris, A. (2000). Free Rad. Res. 33, 747–756.CrossRefGoogle Scholar
  20. 20.
    Stewart, V. C. and Heales, S. J. R. (2003). Free Rad. Biol. Med. 34, 287–303.PubMedCrossRefGoogle Scholar
  21. 21.
    Brown, G. C. (2001). Biochim. Biophys. Acta 1504, 46–57.PubMedCrossRefGoogle Scholar
  22. 22.
    Traaseth, N., Elfering, S., Solien, J., Haynes, V., and Giulivi, C. (2004). Biochim. Biophys. Acta 1658, 64–71.PubMedCrossRefGoogle Scholar
  23. 23.
    Reisser, D., Onier-Cherix, N., and Jeannin, J. F. (2002). J. Enzyme Inhib. Med. Chem. 17, 267–270.PubMedCrossRefGoogle Scholar
  24. 24.
    Mori, M., Gotoh, T., Nagasaki, A., Takiguchi, M., and Sonoki, T. (1998). J. Inherit. Metab. Dis. 21, 59–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Sommer, J. R., and Johnson, E. A. (1979). In: Handbook of physiology. The cardiovascular system. The heart. Am. Physiol. Soc.: Bethesda, MD, 1979, Sect. 2, Vol. I, Chap. 5, pp. 113–186.Google Scholar
  26. 26.
    Kanai, A., Epperly, M., Pearce, L., et al. (2004). Am. J. Physiol. Heart Circ. Physiol. 286, H13-H21.PubMedCrossRefGoogle Scholar
  27. 27.
    Thomas, D. D., Liu, X., Kantrow, S. P., and Lancaster, J. R. Jr. (2001). Proc. Natl. Acad. Sci. USA 98, 355–360.PubMedCrossRefGoogle Scholar
  28. 28.
    Pearce, L. L., Kanai, A. J., Birder, L. A., Pitt, B. R., and Peterson, J. (2002). J. Biol. Chem. 277, 13556–13562.PubMedCrossRefGoogle Scholar
  29. 29.
    Boveris, A., Costa, L. E., Poderoso, J. J., and Cadenas, E. (2000). Ann. NY Acad. Sci. 899, 121–135.PubMedCrossRefGoogle Scholar
  30. 30.
    Shiva, S., Oh, J. I., Landar, A. L., et al. (2005). Free Radic. Biol. Med. 38, 297–306.PubMedCrossRefGoogle Scholar
  31. 31.
    Haynes, V. H., Elfering, S., Traaseth, N., and Giulivi, C. (2004). J. Bioenerg. Biomem. 36, 341–346.CrossRefGoogle Scholar
  32. 32.
    Sarkela, T. M., Berthiaume, J., Elfering, S., Gybina, A., and Giulivi, C. (2001). J. Biol. Chem. 276, 6945–6949.PubMedCrossRefGoogle Scholar
  33. 33.
    Cassina, A. M., Hodara, R., Souza, J. M., et al. (2000). J. Biol. Chem. 275, 21409–21415.PubMedCrossRefGoogle Scholar
  34. 34.
    Brown, G. C. and Borutaite, V. (2002). Free Rad. Biol. Med. 33, 1440–1450.PubMedCrossRefGoogle Scholar
  35. 35.
    Sies, H., Sharov, V. S., Klotz, L. O., and Briviba, K. (1997). J. Biol. Chem. 272, 27812–27817.PubMedCrossRefGoogle Scholar
  36. 36.
    Kuzkaya, N., Weissmann, N., Harrison, D. G., and Dikalov, S. (2003). J. Biol. Chem. 278, 22546–22554.PubMedCrossRefGoogle Scholar
  37. 37.
    Brookes, P. and Darley-Usmar, V. (2002). Free Rad. Biol. Med. 32, 370–374.PubMedCrossRefGoogle Scholar
  38. 38.
    Poeggeler, B., Reiter, R. J., Tan, D. X., Chen, L. D., and Manchester, L. C. (1993). J. Pineal Res. 14, 151–168.PubMedCrossRefGoogle Scholar
  39. 39.
    Reiter, R. J., Garcia, J. J., and Pie, J. (1998). Restor. Neurol. Neurosci. 12, 135–142.PubMedGoogle Scholar
  40. 40.
    Reiter, R. J., Tan, D. X., Sainz, R. M., Mayo, J. C., and Lopez-Burillo, S. (2002). J. Pharm. Pharmacol. 54, 1299–1321.PubMedCrossRefGoogle Scholar
  41. 41.
    Reiter, R. J., Tan, D. X., Manchester, L. C., Lopez-Burillo, S., Sainz, R. M., and Mayo, J. C. (2003). Adv. Exp. Med. Biol. 527, 539–548.PubMedGoogle Scholar
  42. 42.
    Rodriguez, C., Mayo, J. C., Sainz, R. M., et al. (2004). J. Pineal Res. 36, 1–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Escames, G., Khaldy, H., León, J., González, L., and Acuña-Castroviejo, D. (2004). J. Hypertens. 22, 629–635.PubMedCrossRefGoogle Scholar
  44. 44.
    Gitto, E., Romeo, C., Reiter, R. J., et al. (2004). J. Pediatr. Surg. 39, 184–189.PubMedCrossRefGoogle Scholar
  45. 45.
    Rosales-Corral, S., Tan, D. X., Reiter, R. J., et al. (2003). J. Pineal Res. 35, 80–84.PubMedCrossRefGoogle Scholar
  46. 46.
    Mayo, J. C., Tan, D. X., Sainz, R. M., Natarajan, M., Lopez-Burillo, S., and Reiter, R. J. (2003). Biochim. Biophys. Acta 1620, 139–150.PubMedGoogle Scholar
  47. 47.
    Tan, D. X., Reiter, R. J., Manchester, L. C., et al. (2002). Curr. Top. Med. Chem. 2, 181–197.PubMedCrossRefGoogle Scholar
  48. 48.
    Reiter, R. J., Tan, D. X., Manchester, L. C., Lopez-Burillo, S., Sainz, R. M., and Mayo, J. C. (2003). Adv. Exp. Med. Biol. 527, 539–548.PubMedGoogle Scholar
  49. 49.
    Antolin, I., Rodriguez, C., Sainz, R. M., et al. (1996). FASEB J. 10, 882–890.PubMedGoogle Scholar
  50. 50.
    Crespo, E., Macías, E., Pozo, D., et al. (1999). FASEB J. 13, 1537–1546.PubMedGoogle Scholar
  51. 51.
    Rensing, L. and Ruoff, P. (2002). Chronobiol. Int. 19, 807–864.PubMedCrossRefGoogle Scholar
  52. 52.
    Macias, M., Rodriguez-Cabezas, M. N., Reiter, R. J., Osuna, A., and Acuña-Castroviejo, D. (1999). J. Pineal Res. 27, 86–94.PubMedCrossRefGoogle Scholar
  53. 53.
    Reiter, R. J. (1991). Mol. Cell. Endocrinol. 79, C153-C158.PubMedCrossRefGoogle Scholar
  54. 54.
    Tan, D. X., Manchester, L. C., Hardeland, R., et al. (2003). J. Pineal Res. 34, 75–78.PubMedCrossRefGoogle Scholar
  55. 55.
    Martin, M., Macias, M., Escames, G., Leon, J., and Acuña-Castroviejo, D. (2000). FASEB J. 14, 1677–1679.PubMedGoogle Scholar
  56. 56.
    Garcia, J. J., Reiter, R. J., Pie, J., et al. (1999). J. Bioenerg. Biomembr. 31, 609–616.PubMedCrossRefGoogle Scholar
  57. 57.
    Acuña-Castroviejo, D., Reiter, R. J., Menendez-Pelaez, A., Pablos, M. I., and Burgos, A. (1994). J. Pineal Res. 16, 100–112.PubMedCrossRefGoogle Scholar
  58. 58.
    Ressmeyer, A. R., Mayo, J. C., Zelosko, V., et al. (2003). Redox Rep. 8, 205–213.PubMedCrossRefGoogle Scholar
  59. 59.
    Tan, D. X., Mancheste, L. C., Burkhardt, S., et al. (2001). FASEB J. 15, 2294–2296.PubMedGoogle Scholar
  60. 60.
    Acuña-Castroviejo, D., Escames, G., León, J., Carazo, A., and Khaldy, H. (2003). In: Developments in tryptophan and serotonin metabolism. Allegri, G., Costa, C. V. L., Ragazzi, E., Steinhart, H., and Varesio, L. (eds.). New York: Kluwer Academic/Plenum Publishers, pp. 549–557.Google Scholar
  61. 61.
    León, J., Macías, M., Escames, G., et al. (2000). Mol. Pharmacol. 58, 967–975.PubMedGoogle Scholar
  62. 62.
    Escames, G., León, J., López, L. C., and Acuña-Castroviejo, D. (2004). J. Neuroendocrinol. 16, 929–935.PubMedCrossRefGoogle Scholar
  63. 63.
    Acuña-Castroviejo, D., Martín, M., Macías, M., et al. (2001). J. Pineal Res. 30, 65–74.PubMedCrossRefGoogle Scholar
  64. 64.
    León, J., Acuña-Castroviejo, D., Escames, G., Tan, D. X., and Reiter, R. J. (2005). J. Pineal Res. 38, 1–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Martin, M., Macias, M., Escames, G., et al. (2000). J. Pineal Res. 28, 242–248.PubMedCrossRefGoogle Scholar
  66. 66.
    Martin, M., Macias, M., Leon, J., Escames, G., Khaldy, H., and Acuña-Castroviejo, D. (2002). Int. J. Biochem. Cell Biol. 34, 348–357.PubMedCrossRefGoogle Scholar
  67. 67.
    Tan, D. X., Manchester, L. C., Reiter, R. J., et al. (2000). Free Rad. Biol. Med. 29, 1177–1185.PubMedCrossRefGoogle Scholar
  68. 68.
    Andrabi, S. A., Sayeed, I., Siemen, D., Wolf, G., and Horn, T. F. (2004). FASEB J. 18, 869–871.PubMedGoogle Scholar
  69. 69.
    Acuña-Castroviejo, D., Escames, G., Carazo, A., León, J., Khaldy, H., and Reiter, R. J. (2002). Curr. Top. Med. Chem. 2, 133–151.CrossRefGoogle Scholar
  70. 70.
    León, J., Acuña-Castroviejo, D., Sainz, R. M., Mayo, J. C., Tan, D. X., and Reiter, R. J. (2004). Life Sci. 7, 765–790.CrossRefGoogle Scholar
  71. 71.
    Watanabe, K., Wakatsuki, A., Shinohara, K., Ikenoue, N., Yokota, K., and Fukaya, T. (2004). J. Pineal Res. 37, 276–280.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Darío Acuña-Castroviejo
    • 1
  • Germaine Escames
    • 1
  • Luis C. López
    • 1
  • Ana B. Hitos
    • 1
  • Josefa León
    • 1
  1. 1.Departmento de Fisiología, Instituto de BiotecnologíaUniversided de GranadaGranadaSpain

Personalised recommendations