, Volume 27, Issue 2, pp 149–157 | Cite as

Physiological ischemia/reperfusion phenomena and their relation to endogenous melatonin production

An hypothesis
  • Dun-Xian Tan
  • Lucien C. Manchester
  • Rosa M. Sainz
  • Juan C. Mayo
  • Josefa León
  • Russel J. Reiter


Ischemia/reperfusion is a frequently encountered phenomenon in organisms. Prolonged ischemia followed then by reperfusion results in severe oxidative injury in tissues and organs; however, some species can tolerate such events better than others. In nature, arousal from hibernation and resurfacing from diving causes animals to experience classic ischemia/reperfusion and somehow, these animals cope well with the potential oxidative stress. It has been documented that during these physiological ischemia/reperfusion events, the activities of several antioxidant enzymes and the levels of some small-molecular-weight antioxidants become elevated. For example, the potent small-molecular-weight antioxidant melatonin often attains especially high levels during these physiological ischemia/reperfusion events including during arousal from hibernation or in the newborns during delivery. Highly elevated melatonin production during these physiological ischemia/reperfusion episodes exhibits several features. First, this high melatonin production is transient and fits well with the time schedule of the physiological ischemia/reperfusion period; therefore, it is not related to the normal endogenous melatonin rhythm. Yet, this transient peak protects the animals from destructive oxidative processes that occur during these transition periods. Second, these high levels of melatonin seem to derive from several organs since pinealectomy does not totally reduce circulating levels of this agent. Third, high melatonin production present at arousal from hibernation or in the newborns at birth does not appear to be controlled by light, i.e., it occurs both during the day and at night, and the amplitudes of elevated melatonin levels are equivalent at these times. The significance of these findings is discussed herein. Based on currently available data, we hypothesize that melatonin plays an important role in the physiological ischemia/reperfusion, i.e., as a member of antioxidant defense system, to protect against the potential oxidative injury induced by the physiological ischemia/reperfusion.

Key Words

Ischemia reperfusion oxidative stress melatonin hibernation newborn antioxidant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arii, S., Teramoto, K., and Kawamura, T. (2003). J. Hepatobiliary Pancreat Surg. 10, 189–194.PubMedCrossRefGoogle Scholar
  2. 2.
    Toledo-Pereyra, L. H., Lopez-Neblina, F., and Toledo, A. H. (2004). Ann. Transplant. 9, 81–83.PubMedGoogle Scholar
  3. 3.
    Lalu, M. M., Wang, W., and Schulz, R. (2002). Heart Fail. Rev. 7, 359–369.PubMedCrossRefGoogle Scholar
  4. 4.
    Marczin, N., El-Habashi, N., Hoare, G. S., et al. (2003). Arch. Biochem. Biophys. 420, 222–236.PubMedCrossRefGoogle Scholar
  5. 5.
    Ikeda, K., Negishi, H., and Yamori, Y. (2003). Toxicology 189, 55–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Reiter, R. J. (1991). Endocrine Rev. 12, 151–180.CrossRefGoogle Scholar
  7. 7.
    Lerner, A. B., Case, J. D., and Takaheshi, Y. (1958). J. Am. Chem. Soc. 80, 2587.CrossRefGoogle Scholar
  8. 8.
    Reiter, R. J. (1991). Endocr. Rev. 12, 151–180.PubMedGoogle Scholar
  9. 9.
    Reiter, R. J. (1992). Bioessays 14, 169–175.PubMedCrossRefGoogle Scholar
  10. 10.
    Hardeland, R. and Poeggeler, B. (2003). J. Pineal Res. 34, 233–241.PubMedCrossRefGoogle Scholar
  11. 11.
    Tan, D. X., Chen, L. D., Poeggeler, B., et al. (1993). Endocrine J. 1, 57–60.Google Scholar
  12. 12.
    Sofic, E., Rimpapa, Z., Kundurovic, Z., et al. (2005). J. Neural Transm. 112, 349–358.PubMedCrossRefGoogle Scholar
  13. 13.
    Reiter, R. J., Guerrero, J. M., Garcia, J. J., et al. (1998). Ann. NY Acad. Sci. 854, 410–454.PubMedCrossRefGoogle Scholar
  14. 14.
    Tan, D. X., Reiter, R. J., Manchester, L. C., et al. (2002). Curr. Top. Med. Chem. 2, 181–197.PubMedCrossRefGoogle Scholar
  15. 15.
    Tan, D. X., Manchester, L. C., Hardeland, R., et al. (2003). J. Pineal Res. 34, 75–78.PubMedCrossRefGoogle Scholar
  16. 16.
    Cazevieille, C. and Osborne, N. N. (1997). Brain Res. 755, 91–100.PubMedCrossRefGoogle Scholar
  17. 17.
    Li, X. J., Zhang, L. M., Gu, J., et al. (1997). Acta Pharmacol. Sinica 18, 394–396.Google Scholar
  18. 18.
    Sewerynek, E., Reiter, R. J., Melchiorri, D., et al. (1996). Hepatogastroenterology 43, 898–905.PubMedGoogle Scholar
  19. 19.
    De La Lastra, C. A., Cabeza, J., Montilla, V., et al. (1997). J. Pineal Res. 23, 47–52.CrossRefGoogle Scholar
  20. 20.
    Cuzzocrea, S., Costantino, G., Mazzon, E., et al. (2000). J. Pineal Res. 28, 52–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Wakatsuki, A., Okatani, Y., Izumiya, C., et al. (1999). J. Pineal Res. 26, 147–152.PubMedCrossRefGoogle Scholar
  22. 22.
    Bertuglia, S., Marchiafava, P. L., and Colantuoni, A. (1996). Cardiovasc. Res. 31, 947–952.PubMedCrossRefGoogle Scholar
  23. 23.
    Tan, D. X., Manchester, L. C., Reiter, R. J., et al. (1998). J. Pineal Res. 25, 184–191.PubMedCrossRefGoogle Scholar
  24. 24.
    Lagneux, C., Joyeux, M., Demenge, P., et al. (1999). Life Sci. 66, 503–509.CrossRefGoogle Scholar
  25. 25.
    Kaneko, S., Okumura, K., Numaguchi, Y., et al. (2000). Life Sci. 67, 101–112.PubMedCrossRefGoogle Scholar
  26. 26.
    Szarszoi, O., Asemu, G., Vanecek, J., et al. (2001). Cardiovasc. Drugs Ther. 15, 251–257.PubMedCrossRefGoogle Scholar
  27. 27.
    Sahna, E., Olmez, E., and Acet, A. (2002). J. Pineal Res. 32, 194–198.PubMedCrossRefGoogle Scholar
  28. 28.
    Sahna, E., Acet, A., Ozer, M. K., et al. (2002). J. Pineal Res. 33, 234–238.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen, Z., Chua, C. C., Gao, J., et al. (2003). Am. J. Physiol. Heart Circ. Physiol. 284, H1618-H1624.PubMedGoogle Scholar
  30. 30.
    Salie, R., Harper, I., Cillie, C., et al. (2001). J. Mol. Cardiol. 33, 243–357.CrossRefGoogle Scholar
  31. 31.
    Dobsak, P., Siegelova, J., Eicher, J. C., et al. (2003). Pathophysiology 9, 179–187.PubMedCrossRefGoogle Scholar
  32. 32.
    Jung, F. J., Yang, L., Harter, L., et al. (2004). J. Pineal Res. 37, 36–41.PubMedCrossRefGoogle Scholar
  33. 33.
    Sahna, E., Parlakpinar, H., Turkoz, Y., et al. (2005). Physiol. Res. Jan 10 [Epub ahead of print].Google Scholar
  34. 34.
    Reiter, R. J. and Tan, D. X. (2003). Cardiovasc. Res. 58, 10–19.PubMedCrossRefGoogle Scholar
  35. 35.
    Hermes-Lima, M. and Storey, K. B. (1996). Am. J. Physiol. 271, R918-R925.PubMedGoogle Scholar
  36. 36.
    Hermes-Lima, M. and Zenteno-Savin, T. (2002). Comp. Biochem. Physiol. Part C 133, 537–556.CrossRefGoogle Scholar
  37. 37.
    Reiter, R. J., Tan, D. X., Sainz, R. M., et al. (2002). Cardiovasc. Drugs Ther. 16, 5–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Vanecek, J., Jansky, L., Illnerova, H., et al. (1984). Comp. Biochem. Physiol. A. 77, 759–762.PubMedCrossRefGoogle Scholar
  39. 39.
    Vanecek, J., Jansky, L., Illnerova, H., et al. (1985). Comp. Biochem. Physiol. A. 80, 21–23.PubMedCrossRefGoogle Scholar
  40. 40.
    Darrow, J. M., Tamarkin, L., Duncan, M. J., et al. (1986). Biol. Reprod. 35, 74–83.PubMedCrossRefGoogle Scholar
  41. 41.
    Larkin, J. E., Yellon, S. M., and Zucker, I. (2003). Physiol. Biochem. Zool. 76, 577–585.PubMedCrossRefGoogle Scholar
  42. 42.
    Florant, G. L., Rivera, M. L., Lawrence, A. K., et al. (1984). Am. J. Physiol. 247(6 Pt. 2), R1062-R1066.PubMedGoogle Scholar
  43. 43.
    Florant, G., Green, R., Abel, T., et al. (1989). J. Pineal Res. 7, 105–113.PubMedCrossRefGoogle Scholar
  44. 44.
    Stanton, T. L., Craft, C. M., and Reiter, R. J. (1984). Life Sci. 35, 1461–1467.PubMedCrossRefGoogle Scholar
  45. 45.
    Stanton, T. L., Craft, C. M., and Reiter, R. J. (1986). J. Exp. Zool. 239, 247–254.PubMedCrossRefGoogle Scholar
  46. 46.
    Yu, E. Z., Hallenbeck, J. M., Cai, D., et al. (2002). Brain Res. Mol. Brain Res. 102, 9–17.PubMedCrossRefGoogle Scholar
  47. 47.
    Mendonca, M. T., Tousignant, A. J., and Crews, D. (1996). Horm. Behav. 30, 176–185.PubMedCrossRefGoogle Scholar
  48. 48.
    Mendonca, M. T., Tousignant, A. J., and Crews, D. (1995). Gen. Comp. Endocrinol. 100, 226–237.PubMedCrossRefGoogle Scholar
  49. 49.
    Mendonca, M. T., Tousignant, A. J., and Crews, D. (1996). J. Exp. Zool. 274, 63–74.PubMedCrossRefGoogle Scholar
  50. 50.
    Bryden, M. M., Griffiths, D. J., Kennaway, D. J., et al. (1986). Experientia 42, 564–566.PubMedCrossRefGoogle Scholar
  51. 51.
    Duello, A. C. and Tramezzani, J. H. (1969). Gen. Comp. Endocrinol. 12, 154–164.CrossRefGoogle Scholar
  52. 52.
    Little, G. J. and Bryden, M. M. (1990). J. Pineal Res. 9, 139–148.PubMedCrossRefGoogle Scholar
  53. 53.
    Bryden, M. M., Buckendahl, P., Sanders, J., et al. (1994). Comp. Biochem. Physiol. A Physiol. 109, 895–904.PubMedCrossRefGoogle Scholar
  54. 54.
    Stokkan, K. A., Vaughan, M. K., Reiter, R. J., et al. (1995). Gen. Comp. Endocrinol. 98, 321–331.PubMedCrossRefGoogle Scholar
  55. 55.
    Okatani, Y., Okamoto, K., Hayashi, K., et al. (1998). J. Pineal Res. 25, 129–134.PubMedCrossRefGoogle Scholar
  56. 56.
    Pang, S. F., Tang, P. L., Tang, G. W., et al. (1987). J. Pineal Res. 4, 21–31.PubMedCrossRefGoogle Scholar
  57. 57.
    Acuna, D., Fernandez, B., Castillo, J. I., et al. (1989). J. Endocrinol. Invest. 12(Suppl. 2), 67.Google Scholar
  58. 58.
    Nakamura, Y., Tamura, H., Kashida, S., et al. (2001). J. Pineal Res. 30, 29–33.PubMedCrossRefGoogle Scholar
  59. 59.
    Michell, M. D., Sayers, L., Keirse, M. J. N. C., et al. (1978). Br. J. Obst. Gyn. 85, 684–686.Google Scholar
  60. 60.
    Lang, U., Geguin, P. C., and Sisonenko, P. C. (1979). J. Neural Transm. Supp. 21, 478–480.Google Scholar
  61. 61.
    Mitchell, M. D., Bibby, J. G., Sayers, L., et al. (1979). Br. J. Obstet. Gynaecol. 86, 29–31.PubMedGoogle Scholar
  62. 62.
    Vicente, P., Garcia, A., Alvarez, E., et al. (1989). J. Pineal Res. 6, 135–140.PubMedCrossRefGoogle Scholar
  63. 63.
    Munoz-Hoyos, A., Jaldo-Alba, F., Molina-Carballo, A., et al. (1993). J. Clin. Endocrinol. Metab. 77, 699–703.PubMedCrossRefGoogle Scholar
  64. 64.
    Kennaway, D. J. and Seamark, R. F. (1975). J. Reprod. Fertil. 45, 529–531.PubMedCrossRefGoogle Scholar
  65. 65.
    Kennaway, D. J., Matthews, C. D., Seamark, R. F., et al. (1977). J. Steroid Biochem. 8, 559–563.PubMedCrossRefGoogle Scholar
  66. 66.
    Ralph, C. L. (1975). Int. J. Biometeorol. 19, 289–303.PubMedCrossRefGoogle Scholar
  67. 67.
    Aarseth, J. J., Vant Hof, T. J., and Stokkan, K. A. (2003). J. Comp. Physiol. [B]. 173, 37–42.Google Scholar
  68. 68.
    Stokkan, K. A. and Aarseth, J. J. (2004). Pflugers Arch. 447, 405–407.PubMedCrossRefGoogle Scholar
  69. 69.
    Griffiths, D., Seamark, R. F., and Bryden, M. M. (1979). Aust. J. Biol. Sci. 32, 581–586.PubMedGoogle Scholar
  70. 70.
    Bennett, K. A., McConnell, B. J., and Fedak, M. A. (2001). J. Exp. Biol. 204(Pt. 4), 649–662.PubMedGoogle Scholar
  71. 71.
    Munárriz, R., Park, K., Huang, Y. H., et al. (2003). Urology 62, 760–764.PubMedCrossRefGoogle Scholar
  72. 72.
    Evliyaoglu, Y., Kayrin, L., and Kaya, B. (1997). Br. J. Urol. 80, 476–479.PubMedGoogle Scholar
  73. 73.
    Evliyaoglu, Y., Kayrin, L., and Kaya, B. (1997). Urol. Res. 25, 143–147.PubMedCrossRefGoogle Scholar
  74. 74.
    Sener, G., Paskaloglu, K., Sehirli, A. O., et al. (2002). J. Urol. 167, 2624–2627.PubMedCrossRefGoogle Scholar
  75. 75.
    Tijmes, M., Pedraza, R., and Valladares, L. (1996). Steroids 61, 65–68.PubMedCrossRefGoogle Scholar
  76. 76.
    Osborne, P. G. (2003). J. Physiol. 547(Pt. 3), 963–970.PubMedCrossRefGoogle Scholar
  77. 77.
    Wilhelm Filho, D., Sell, F., Ribeiro, L., et al. (2002). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133, 885–889.PubMedCrossRefGoogle Scholar
  78. 78.
    Hermes-Lima, M. and Storey, K. B. (1993). Am. J. Physiol. 265(3 Pt. 2), R646-R652.PubMedGoogle Scholar
  79. 79.
    Kilic, E., Ozdemir, Y. G., Bolay, H., et al. (1999). J. Cereb. Blood Flow Metab. 19, 511–516.PubMedCrossRefGoogle Scholar
  80. 80.
    Joo, J. Y., Uz, T., and Manev, H. (1998). Restor. Neurol. Neurosci. 13, 185–191.PubMedGoogle Scholar
  81. 81.
    De Butte, M., Fortin, T., and Pappas, B. A. (2002). Neurobiol. Aging 23, 309–317.PubMedCrossRefGoogle Scholar
  82. 82.
    Reiter, R. J. (1991). Int. J. Biometeorol. 35, 169–175.PubMedCrossRefGoogle Scholar
  83. 83.
    Drew, K. L., Toien, O., Rivera, P. M., et al. (2002). Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 133, 483–492.PubMedCrossRefGoogle Scholar
  84. 84.
    Toien, O., Drew, K. L., Chao, M. L., et al. (2001). Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R572-R583.PubMedGoogle Scholar
  85. 85.
    Drew, K. L., Osborne, P. G., Frerichs, K. U., et al. (1999). Brain Res. 851, 1–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Tan, D. X., Hardeland, R., Manchester, L. C., et al. (2003). J. Pineal Res. 34, 249–259.PubMedCrossRefGoogle Scholar
  87. 87.
    Behrens, A., Hardeland, R., Ness, H., et al. (2004). Redox Rep. 9, 279–288.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Dun-Xian Tan
    • 2
  • Lucien C. Manchester
    • 1
  • Rosa M. Sainz
    • 2
  • Juan C. Mayo
    • 2
  • Josefa León
    • 2
  • Russel J. Reiter
    • 2
  1. 1.Department of Biology and BiochemistrySt Mary’s UniversityUSA
  2. 2.Department of Cellular and Structural BiologyUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations