, Volume 25, Issue 3, pp 265–275 | Cite as

Bacterial endotoxin lipopolysaccharide and reactive oxygen species inhibit leydig cell steroidogenesis via perturbation of mitochondria

  • John A. Allen
  • Thorsten Diemer
  • Paul Janus
  • Karen Held Hales
  • Dale B. Hales


Chronic inflammatory disease and acute infection are well known to inhibit gonadal steroidogenesis. Previous studies have demonstrated that immune activation in response to lipopolysaccharide (LPS) results in reductions in serum testosterone, and this is a direct effect on the Leydig cell. We hypothesize that during the early onset of LPS endotoxemia in vivo, testicular macrophages produce reactive oxygen species (ROS) leading to perturbation of Leydig cell mitochondria and an inhibition in steroidogenesis. To investigate the mechanism of LPS inhibition of Leydig cell steroidogenesis, alterations in mitochondria and markers of oxidative stress were assessed in vivo and in Leydig cell primary culture. After a single injection of mice with LPS, serum testosterone was significantly decreased within 2 h. LPS injection of mice resulted in significant reductions in steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydogenase-Δ45 isomerase (3β-HSD) proteins. LPS significantly increased lipid peroxidation of Leydig cell membranes, indicating that LPS results in oxidative damage in vivo. Mitochondria in Leydig cells isolated from LPS-injected mice were disrupted and showed a marked reduction in the mitochondrial membrane potential (Δψm). Similar to the effects of LPS, treatment of Leydig cells with hydrogen peroxide acutely inhibited steroidogenesis, reduced StAR and 3β-HSD protein levels, and disrupted Δψm. These results suggest that LPS acutely inhibits Leydig cell function by ROS-mediated disruption of Leydig cell mitochondria. Taken together, these results demonstrate the necessity of having respiring mitochondria with an intact Δψm to facilitate StAR function and Leydig cell steroidogenesis. The acute effects of LPS demonstrate how sensitive Leydig cell mitochondrial steroidogenesis is to inflammation-induced oxidative stress.

Key Words

Steroidogenesis testosterone LPS Leydig cell reactive oxygen StAR, 3β-HSD mitochondrial electrochemical membrane potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rivier, C. and Rivest, S. (1991). Biol. Reprod. 45, 523–532.PubMedCrossRefGoogle Scholar
  2. 2.
    Ogilvie, K. M., Held Hales, K., Roberts, M. E., Hales, D. B., and Rivier, C. (1999). Biol. Reprod. 60, 527–533.PubMedCrossRefGoogle Scholar
  3. 3.
    Sharma, A. C., Bosmann, H. B., Motew, S. J., et al. (1996). Shock 6, 150–154.PubMedCrossRefGoogle Scholar
  4. 4.
    Sam, A. D. 2nd, Sharma, A. C., Lee, L. Y., et al. (1999). Shock 11, 298–301.PubMedCrossRefGoogle Scholar
  5. 5.
    Bosmann, H. B., Hales, K. H., Li, X., Liu, Z., Stocco, D. M., and Hales, D. B. (1996). Endocrinology 137, 4522–4525.PubMedCrossRefGoogle Scholar
  6. 6.
    Hales, K. H., Diemer, T., Ginde, S., et al. (2000). Endocrinology 141, 4000–4012.PubMedCrossRefGoogle Scholar
  7. 7.
    Stocco, D. M. and Clark, B. J. (1996). Biochem. Pharmacol. 51, 197–205.PubMedCrossRefGoogle Scholar
  8. 8.
    Payne, A. H. and O’Shaughnessy, P. J. (1996). In: The Leydig cell. Payne, A. H., Hardy, M. P., and Russell, L. D. (eds.). Cache River Press, Vienna, IL, pp. 259–285.Google Scholar
  9. 9.
    Stocco, D. M. (1999). Bioessays 21, 768–775.PubMedCrossRefGoogle Scholar
  10. 10.
    Cherradi, N., Rossier, M. F., Vallotton, M. B., et al. (1997). J. Biol. Chem. 272, 7899–7907.PubMedCrossRefGoogle Scholar
  11. 11.
    Saez, J. M. (1994). Endocrine Rev. 15, 574–626.CrossRefGoogle Scholar
  12. 12.
    Behrman, H. R., Kodaman, P. H., Preston, S. L., and Gao, S. (2001). J. Soc. Gynecol. Investig. 8, S40-S42.PubMedCrossRefGoogle Scholar
  13. 13.
    Behrman, H. R. and Aten, R. F. (1991). Endocrinology 128, 2958–2966.PubMedGoogle Scholar
  14. 14.
    Margolin, Y., Aten, R. F., and Behrman, H. R. (1990). Endocrinology 127, 245–250.PubMedGoogle Scholar
  15. 15.
    Stocco, D. M., Wells, J., and Clark, B. J. (1993). Endocrinology 133, 2827–2832.PubMedCrossRefGoogle Scholar
  16. 16.
    Diemer, T., Allen, J. A., Hales, K. H., and Hales, D. B. (2003). Endocrinology 144, 2882–2891.PubMedCrossRefGoogle Scholar
  17. 17.
    Chen, H., Cangello, D., Benson, S., et al. (2001). Exp. Gerontol. 36, 1361–1373.PubMedCrossRefGoogle Scholar
  18. 18.
    Zirkin, B. R. and Chen, H. (2000). Biol. Reprod. 63, 977–981.PubMedCrossRefGoogle Scholar
  19. 19.
    Zirkin, B. R., Santulli, R., Strandberg, J. D., Wright, W. W., and Ewing, L. L. (1993). J. Androl. 14, 118–123.PubMedGoogle Scholar
  20. 20.
    Hales, D. B. (1996). In: The Leydig cell. Payne, A. H., Hardy, M. P., and Russell, L. D. (eds.). Cache River Press, Vienna, IL, pp. 451–466.Google Scholar
  21. 21.
    Hales, D. B., Diemer, T., and Hales, K. H. (1999). Endocrine 10, 201–217.PubMedGoogle Scholar
  22. 22.
    Roos, D. (1991). Klin. Wochenschr. 69, 975–980.PubMedCrossRefGoogle Scholar
  23. 23.
    Wei, R. Q., Yee, J. B., Straus, D. C., and Hutson, J. C. (1988). Biol. Reprod. 38, 830–835.PubMedCrossRefGoogle Scholar
  24. 24.
    Lenaz, G. (1998). Biochim. Biophys. Acta 1366, 53–67.PubMedCrossRefGoogle Scholar
  25. 25.
    Stocco, D. M. (2001). Annu. Rev. Physiol. 63, 193–213.PubMedCrossRefGoogle Scholar
  26. 26.
    Christenson, L. K., Strauss, I., and Jerome F. (2001). Arch. Med. Res. 32, 576–586.PubMedCrossRefGoogle Scholar
  27. 27.
    King, S. R. and Stocco, D. M. (1996). Endocrine Res. 22, 505–514.Google Scholar
  28. 28.
    King, S. R., Liu, Z., Soh, J., Eimerl, S., Orly, J., and Stocco, D. M. (1999). J. Steroid Biochem. Mol. Biol. 69, 143–154.PubMedCrossRefGoogle Scholar
  29. 29.
    King, S. R., Walsh, L. P., and Stocco, D. M. (2000). Mol. Cell. Endocrinol. 166, 147–153.PubMedCrossRefGoogle Scholar
  30. 30.
    Granot, Z., Geiss-Friedlander, R., Melamed-Book, N., et al. (2003). Mol. Endocrinol. 17, 2461–2476.PubMedCrossRefGoogle Scholar
  31. 31.
    Held Hales, K., Diemer, T., Ginde, S., et al. (2000). Endocrinology 141, 4000–4012.CrossRefGoogle Scholar
  32. 32.
    Victor, V. M. and De La Fuente, M. (2003). Physiol. Res. 52, 101–110.PubMedGoogle Scholar
  33. 33.
    Pfanner, N. (2000). Curr. Biol. 10, R412-R415.PubMedCrossRefGoogle Scholar
  34. 34.
    Schatz, G. (1996). J. Biol. Chem. 271, 31763–31766.PubMedGoogle Scholar
  35. 35.
    Schmidt, S., Strub, A., and Voos, W. (2001). Biol. Signals Recept. 10, 14–25.PubMedCrossRefGoogle Scholar
  36. 36.
    Abbaszade, I. G., Arensburg, J., Park, C. H., Kasa-Vubu, J. Z., Orly, J., and Payne, A. H. (1997). Endocrinology 138, 1392–1399.PubMedCrossRefGoogle Scholar
  37. 37.
    Cerami, A. (1992). Clin. Immunol. Immunopathol. 62, S3-S10.PubMedCrossRefGoogle Scholar
  38. 38.
    Xiong, Y. and Hales, D. B. (1994). Endocrine J. 2, 223–228.Google Scholar
  39. 39.
    Hales, D. B., Xiong, Y., and Tur-Kaspa, I. (1992). J. Steroid Biochem. Mol. Biol. 43, 907–914.CrossRefGoogle Scholar
  40. 40.
    Victor, V. M. and De la Fuente, M. (2003). Physiol. Res. 52, 789–796.PubMedGoogle Scholar
  41. 41.
    Riedel, W., Lang, U., Oetjen, U., Schlapp, U., and Shibata, M. (2003). Mol. Cell. Biochem. 247, 83–94.PubMedCrossRefGoogle Scholar
  42. 42.
    Bray, T. M. (2000). Nutrition 16, 578–581.PubMedCrossRefGoogle Scholar
  43. 43.
    Chapple, I. L. (1997). J. Clin. Periodontol. 24, 287–296.PubMedCrossRefGoogle Scholar
  44. 44.
    Jaeschke, H. (2000). J. Gastroenterol. Hepatol. 15, 718–724.PubMedCrossRefGoogle Scholar
  45. 45.
    Raha, S. and Robinson, B. H. (2000). Trends Biochem. Sci. 25, 502–508.PubMedCrossRefGoogle Scholar
  46. 46.
    Turner, T. T., Tung, K. S., Tomomasa, H., and Wilson, L. W. (1997). Biol. Reprod. 57, 1267–1274.PubMedCrossRefGoogle Scholar
  47. 47.
    Schoneich, C. (1999). Exp. Gerontol. 34, 19–34.PubMedCrossRefGoogle Scholar
  48. 48.
    Peltola, V., Huhtaniemi, I., and Ahotupa, M. (1995). Biol. Reprod. 53, 1146–1150.PubMedCrossRefGoogle Scholar
  49. 49.
    Lesnefsky, E. J., Moghaddas, S., Tandler, B., Kerner, J., and Hoppel, C. L. (2001). J. Mol. Cell. Cardiol. 33, 1065–1089.PubMedCrossRefGoogle Scholar
  50. 50.
    Zini, A. and Schlegel, P. N. (1997). J. Urol. 158, 659–663.PubMedCrossRefGoogle Scholar
  51. 51.
    Ahotupa, M. and Huhtaniemi, I. (1992). Biol. Reprod. 46, 1114–1118.PubMedCrossRefGoogle Scholar
  52. 52.
    Luo, L., Chen, H., and Zirkin, B. R. (2001). J. Androl. 22, 149–156.PubMedGoogle Scholar
  53. 53.
    Hales, D. B. (1992). Endocrinology 131, 2165–2172.PubMedCrossRefGoogle Scholar
  54. 54.
    Wiebe, J. P. (1976). Endocrinology 98, 505–513.PubMedCrossRefGoogle Scholar
  55. 55.
    Laemmli, U. K. (1970). Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  56. 56.
    Xiong, Y. and Hales, D. B. (1993). Endocrinology 132, 2438–2444.PubMedCrossRefGoogle Scholar
  57. 57.
    Hales, D. B., Sha, L. L., and Payne, A. H. (1987). J. Biol. Chem. 262, 11200–11206.PubMedGoogle Scholar
  58. 58.
    Scaduto, R. C. Jr. and Grotyohann, L. W. (1999). Biophys. J. 76, 469–477.PubMedCrossRefGoogle Scholar
  59. 59.
    Diemer, T., Held Hales, K., Ginde, S., et al. (2000). Biol. Reprod. 63, 343.Google Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • John A. Allen
    • 1
  • Thorsten Diemer
    • 1
    • 2
  • Paul Janus
    • 1
  • Karen Held Hales
    • 1
  • Dale B. Hales
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicago
  2. 2.Department of UrologyUniversity Hospital of the Justus-Liebig-UniversityGiessenGermany

Personalised recommendations