Advertisement

Endocrine

, Volume 25, Issue 1, pp 15–22 | Cite as

Age-related decreases in gonadal hormones in long-evans rats

Relationship to rise in arterial pressure
  • Ian H. Fentie
  • Michael M. Greenwood
  • J. Michael Wyss
  • John T. ClarkEmail author
Original Articles

Abstract

Sex steroids modify sexual behavior and autonomic function. The gradual decline in circulating levels is correlated with several diseases in humans and animals. However, little is known about age-related changes that occur in the availability of these steroids. In the current studies, we characterized age-related changes in (1) circulating levels of estradiol (females) or testosterone (males), (2) reproductive function (estrous cyclicity in females; erectile reflexes in males), and (3) blood pressure in a longitudinal study. In a separate study, we characterized the estrous cyclicity of sex steroids in female, and diurnal periodicity in male, Long-Evans rats. Young females exhibit regular estrous cycles, transition to irregular cycles at about 10 mo of age, then to cycles characterized by extended periods of estrous, and to persistent estrous. Despite the loss of cyclicity, circulating 17β-estradiol in middle-aged females was maintained at levels similar to those in young females during diestrous. Males display an age-related decline in testosterone, circulating levels decrease by about 25% during the period from 8 to 16 mo of age. Also, during any 24 h period testosterone levels in young males vary from a peak of about 3.5 ng/mL (late light period) to a trough of 0.7 ng/mL (early dark period). In middle-aged males the rhythm amplitude is greatly blunted (1.4 to 0.7 ng/mL). Males exhibit age-related decrements in erectile reflexes. In females and males systolic blood pressure is relatively stable until 8 mo of age, but significantly increases during the next 5 mo of age. In males, the increase in arterial pressure is gradual from about 8 mo of age. Young females have lower blood pressures than age-matched males, but by 14 mo of age this sex-related advantage is lost. Thus, by middle age, male and female rats are exposed to less gonadal hormone/altered patterns of availability, exhibit decrements in reproductive function, and display an increase in systolic blood pressure.

Key Words

Estradiol testosterone aging blood pressure reproductive function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pickering, S. G. (1995). In: Hypertension: pathophysiology, diagnosis, and management, 2nd ed. Laragh, J. H. and Brenner, B. M. (eds.). Raven: New York.Google Scholar
  2. 2.
    Kotchen, J. M., McKean, H. E., and Kotchen, T. A. (1982). Hypertension 4, 128–134.Google Scholar
  3. 3.
    Burt, V. L., Whelton, P., and Roccella, E. J. (1995). Hypertension 25, 305–314.PubMedGoogle Scholar
  4. 4.
    Davidson, J. M. (1990). In: Principles of gerontology. Hazard, W. R., Andres, R., Bierman, E. L., and Blass, J. P. (eds.). Raven: New York.Google Scholar
  5. 5.
    Pfaff, D. W. (1980). Estrogens and brain function. Springer-Verlag, New York.Google Scholar
  6. 6.
    Wyss, J. M. and Carlson, S. H. (2003). Curr. Hypertension Rep. 5, 241–246.CrossRefGoogle Scholar
  7. 7.
    Maftolin, F., Gutmann, J. N., DeCherney, A. H., and Sarrel, P. M. (eds.). (1990). Ovarian secretions and cardiovascular disease. Raven: New York.Google Scholar
  8. 8.
    Micevych, P. E. and Hammer, R. P. (eds.) (1995). Neurobiological effects of sex steroid hormones. Cambridge University, Cambridge, UK.Google Scholar
  9. 9.
    Huang, H. H., Steger, R. W., Bruni, J. F., and Meites, J. (1978). Endocrinol. 103, 1855–1859.Google Scholar
  10. 10.
    LaPolt, P. S., Matt, D. W., Judd, H. L., and Lu, J. K. (1986). Biol. Reprod. 35, 1131–1139.PubMedCrossRefGoogle Scholar
  11. 11.
    LeFevre, J. and McClintock, M. K. (1988). Biol. Reprod. 38, 780–789.PubMedCrossRefGoogle Scholar
  12. 12.
    Lu, J. K. (1983). In: Neuroendocrinology of aging. Meites, J. (ed.). Plenum: New York.Google Scholar
  13. 13.
    Lu, J. K., LaPolt, P. S., Nass, T. E., Matt, D. W., and Judd, H. L. (1985). Endocrinol. 116, 1953–1959.Google Scholar
  14. 14.
    von Eiff, A. W. and Piekarski, C. (1977). Prog. Brain Res. 47, 289–299.CrossRefGoogle Scholar
  15. 15.
    Sei, H., Sano, A., Ohno, H., et al. (2002). Sleep 25, 279–285.PubMedGoogle Scholar
  16. 16.
    Zhang, B. and Sannajust, F. (2000). Physiol. Behav. 70, 375–380.PubMedCrossRefGoogle Scholar
  17. 17.
    von Eiff, A. W., Plotz, E. J., Beck, K. J., and Czernik, A. (1971). Am. J. Obstet. Gynecol. 109, 887–892.Google Scholar
  18. 18.
    von Eiff, A. W. (1970). Jpn. Circ. J. 34, 147–153.Google Scholar
  19. 19.
    Tanaka, H., Hayashi, H., Sano, H., Saito, H., and Ebihara, S. (1994). Am. J. Physiol. (Regul. Integ. Compar. Physiol.) 267, R1250-R1256.Google Scholar
  20. 20.
    Fortepiani, L. A., Zhang, H., Racusen, L., Roberts, L. J., and Reckelhoff, J. F. (2003). Hypertension 41, 640–645.PubMedCrossRefGoogle Scholar
  21. 21.
    Oparil, S., Chen, Y.-F., Peng, N., and Wyss, J. M. (1996). Front. Neuroendocrinol. 17, 212–246.PubMedCrossRefGoogle Scholar
  22. 22.
    Simpkins, J. W. (1984). Neurobiol. Aging 5, 309–313.PubMedCrossRefGoogle Scholar
  23. 23.
    Estes, K. S. and Simpkins, J. W. (1984). Brain Res. 298, 209–218.PubMedCrossRefGoogle Scholar
  24. 24.
    Simpkins, J. W., Mueller, G. P., Huang, H. H., and Meites, J. (1977). Endocrinol. 100, 1672–1678.Google Scholar
  25. 25.
    Fang, Z., Carlson, S. H., Chen, Y. F., Oparil, S., and Wyss, J. M. (2001). Am. J. Physiol. (Regul. Integr. Comp. Physiol.) 281, R1934-R1939.Google Scholar
  26. 26.
    Peng, N., Clark, J. T., Wei, C. C., and Wyss, J. M. (2003). Hypertension 41, 1164–1167.PubMedCrossRefGoogle Scholar
  27. 27.
    Goldblatt, H. H. (1938). Bull. NY Acad. Med. 14, 523–528.Google Scholar
  28. 28.
    Molteni, A., Brownie, A. C., and Skelton, F. R. (1969). Lab. Investig. 21, 129–138.PubMedGoogle Scholar
  29. 29.
    Colby, H. D., Skelton, F. R., and Brownie, A. C. (1970). Endocrinol. 86, 1093–1097.Google Scholar
  30. 30.
    Iams, S. G. and Wexler, B. C. (1977). J. Lab. Clin. Med. 90, 997–1003.PubMedGoogle Scholar
  31. 31.
    Smith, E. R., Stefanick, M. L., Clark, J. T., and Davidson, J. M. (1992). Horm. Behav. 26, 110–135.PubMedCrossRefGoogle Scholar
  32. 32.
    Chambers, K. C. and Phoenix, C. H. (1984). Behav. Neural Biol. 40, 87–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Phoenix, C. H. and Chambers, K. C. (1986). Biol. Reprod. 35, 918–926.PubMedCrossRefGoogle Scholar
  34. 34.
    Hsu, H. K., Hsu, C., Yu, J. Y., and Peng, M. T. (1986). Gerontology 32, 10–17.PubMedCrossRefGoogle Scholar
  35. 35.
    Roselli, C. E., Thornton, J. E., and Chambers, K. C. (1993). Behav. Neurosci. 107, 202–209.PubMedCrossRefGoogle Scholar
  36. 36.
    Clark, J. T. (1995). Neurosci. Biobehav. Rev. 19, 279–302.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith, M. S., Freeman, M. E., and Neill, J. D. (1975). Endocrinol. 96, 219–226.Google Scholar
  38. 38.
    Powers, J. B. (1970). Physiol. Behav. 5, 831–835.PubMedCrossRefGoogle Scholar
  39. 39.
    Kalra, P. S. and Kalra, S. P. (1977). Endocrinol. 101, 1821–1827.CrossRefGoogle Scholar
  40. 40.
    Kalra, P. S. and Kalra, S. P. (1979). J. Steroid Biochem. 11, 981–987.PubMedCrossRefGoogle Scholar
  41. 41.
    Bremner, W. J., Vitiello, M. V., and Prinz, P. N. (1983). J. Clin. Endocrinol. Metab. 56, 1278–1281.PubMedCrossRefGoogle Scholar
  42. 42.
    Simpkins, J. W., Kalra, P. S., and Kalra, S. P. (1981). Exp. Aging Res. 7, 25–32.PubMedGoogle Scholar
  43. 43.
    Steiner, R. A., Bremner, W. J., Clifton, D. K., and Dorsa, D. M. (1984). Biol. Reprod. 31, 251–258.PubMedCrossRefGoogle Scholar
  44. 44.
    Van Den Buuse, M. (1994). Physiol. Behav. 55, 783–787.PubMedCrossRefGoogle Scholar
  45. 45.
    Lu, J. K., Hopper, B. R., Vargo, T. M., and Yen, S. C. C. (1979). Biol. Reprod. 21, 193–203.PubMedCrossRefGoogle Scholar
  46. 46.
    Davidson, J. M., Stefanick, M. L., Sachs, B. D., and Smith, E. R. (1978). Physiol. Behav. 21, 141–146.PubMedCrossRefGoogle Scholar
  47. 47.
    Clark, J. T. and Kalra, P. S. (1985). Horm. Behav. 19, 304–310.PubMedCrossRefGoogle Scholar
  48. 48.
    Clark, J. T., Micevych, P. E., Panossian, V., and Keaton, A. K. (1995). Neurosci. Biobeh. Rev. 19, 369–376.CrossRefGoogle Scholar
  49. 49.
    Keaton, A. K. and Clark, J. T. (1998). Physiol. Behav. 64, 339–346.PubMedCrossRefGoogle Scholar
  50. 50.
    Clark, J. T. (1994). Neurobiol. Aging 14, 191–196.CrossRefGoogle Scholar
  51. 51.
    Clark, J. T., Sahu, A., Mrotek, J. J., and Kalra, S. P. (1991). Am. J. Physiol. (Regul. Integr. Comp. Physiol.) 261, R1234-R1241.Google Scholar
  52. 52.
    Clark, J. T., Keaton, A. K., Sahu, A., Kalra, S. P., Mahajan, S. C., and Gudger, J. N. (1998). Regul. Peptides 75–76, 335–345.CrossRefGoogle Scholar
  53. 53.
    Bunag, R. D. and Teravainen, T. L. (1991). Mech. Ageing Dev. 59, 197–213.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Ian H. Fentie
    • 2
  • Michael M. Greenwood
    • 1
  • J. Michael Wyss
    • 3
  • John T. Clark
    • 1
    Email author
  1. 1.Department of PhysiologyMeharry Medical CollegeNashville
  2. 2.Department of Pathology, Anatomy & Cell BiologyMeharry Medical CollegeNashville
  3. 3.Department of Cell BiologyUniversity of Alabama at BirminghamBirmingham

Personalised recommendations