Advertisement

Endocrine

, Volume 23, Issue 1, pp 59–75 | Cite as

Pituitary adenylate cyclase activating polypeptide-mediated intracrine signaling in the testicular germ cells

  • Min Li
  • Hisayuki Funahashi
  • Majambu Mbikay
  • Seiji Shioda
  • Akira ArimuraEmail author
Original Articles

Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP) is found not only in the brain, but is also abundantly expressed in the testicular germ cells. However, the physiological role of testicular PACAP remains unknown. Autoradiographic studies showed a considerable number of PACAP-specific binding sites in the seminiferous tubules. Immunohistochemistry demonstrated PAC1-receptor (R)-like immunoreactivity (li) in the cytoplasm of round spermatids, aggregated in the acrosome and coexpressed with PACAP-li. Spermatid-enriched fractions were examined for the subcellular localization of PACAP binding sites and PAC1-R-li. The highest levels of PACAP binding sites and PAC1-R-li were found in the cytosolic, followed by the nuclear, and the lowest levels in the membrane fraction. The testicular cytosolic PAC1-R-like protein showed a specific competitive inhibition in the radioreceptor assay for PACAP38 and 27, with a K i of 0.069 nM and 0.179 nM, respectively. The addition of PACAP to the cytosol of spermatids only slightly activated adenylate cyclase, while it markedly stimulated the expression and activation of ERK-type mitogen-activated protein kinase (MAPK). In the PAC1-R-like protein-depleted cytosol, a PAC1-R-specific agonist, maxadilan, did not activate MAPK, but PACAP and VIP still did. Because VPAC2-R, which binds both PACAP and VIP, is expressed in the testis, the findings suggest that cytosolic VPAC2-R-like proteins are also present and coupled to MAPK. The MAPK activation does not seem to require a heterotrimeric G-protein. Because PACAP and its receptors are coexpressed in the cytoplasm of spermatids, endogenous PACAP may directly interact with the cytosolic PAC1-R-like protein without the ligand being released into the extracellular space. This possibility is supported by the observation that cytosolic endogenous PACAP in spermatids was co-immunoprecipitated with the cytosolic PAC1-R. This mechanism may be called “intracrine,” and its physiological significance is discussed.

Key Words

Immunohistochemistry testicular germ cells mitogen-activated protein kinase adenylate cyclase soluble adenylate cyclase pituitary adenylate cyclase activating polypeptide vasoactive intestinal peptide cytosolic receptors intracrine prohormone convertase 4 knock-out mouse growth hormone releasing hormone secretin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miyata, A., Arimura, A., Dahl, R. R., et al. (1989). Biochem. Biophys. Res. Commun. 164, 567–574.PubMedCrossRefGoogle Scholar
  2. 2.
    Miyata, A., Jiang, L., Dahl, R. D., et al. (1990). Biochem. Biophys. Res. Commun. 170, 643–648.PubMedCrossRefGoogle Scholar
  3. 3.
    Arimura, A., Somogyvari-Vigh, A., Miyata, A., Mizuno, K., Coy, D. H., and Kitada, C. (1991). Endocrinology 129, 2787–2789.PubMedGoogle Scholar
  4. 4.
    Shioda, S., Legradi, G., Leung, W. C., Nakajo, S., Nakaya, K., and Arimura, A. (1994). Endocrinology 135, 818–825.PubMedCrossRefGoogle Scholar
  5. 5.
    Yanaihara, H., Vigh, S., Kozicz, T., Somogyvari-Vigh, A., and Arimura, A. (1998). Regul. Pept. 78, 83–88.PubMedCrossRefGoogle Scholar
  6. 6.
    Kononen, J., Paavola, M., Penttila, T. L., Parvinen, M., and Pelto-Huikko, M. (1994). Endocrinology 135, 2291–2294.PubMedCrossRefGoogle Scholar
  7. 7.
    Hannibal, J. and Fahrenkrug, J. (1995). Regul. Pept. 55, 111–115.PubMedCrossRefGoogle Scholar
  8. 8.
    Daniel, P. B. and Habener, J. F. (1997). Abstracts of the Endocrine Society’s 79th Annual Meeting. P3-382, p. 532.Google Scholar
  9. 9.
    Gottschall, P. E., Tatsuno, I., Miyata, A., and Arimura, A. (1990). Endocrinology 127, 272–277.PubMedGoogle Scholar
  10. 10.
    Arimura, A. (1998). Jpn. J. Physiol. 48, 301–331.PubMedCrossRefGoogle Scholar
  11. 11.
    Shivers, B. D., Gorcs, T. J., Gottschall, P. E., and Arimura, A. (1991). Endocrinology 128, 3055–3065.PubMedCrossRefGoogle Scholar
  12. 12.
    Li, M., Shioda, S., Somogyvari-Vigh, A., Onda, H., and Arimura, A. (1997). Endocrine 7, 183–190.PubMedGoogle Scholar
  13. 13.
    Arimura, A. and Shioda, S. (1995). Front. Neuroendocrinol. 16, 53–88.PubMedCrossRefGoogle Scholar
  14. 14.
    Gottschall, P. E., Katsuura, G., Dahl, R. R., Hoffmann, S. T., and Arimura, A. (1988). Biol. Reprod. 39, 1074–1085.PubMedCrossRefGoogle Scholar
  15. 15.
    Krantic, S., Martel, J. C., Weissmann, D., and Quirion, R. (1989). Brain Res. 498, 267–278.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhou, C. J., Shioda, S., Shibanuma, M., et al. (1999). Neuroscience 93, 375–391.PubMedCrossRefGoogle Scholar
  17. 17.
    Litvin, T. N., Kamenetsky, M., Zarifyan, A., Buck, J., and Levin, L. R. (2003). J. Biol. Chem. 278, 15922–15926.PubMedCrossRefGoogle Scholar
  18. 18.
    Arimura, A., Somogyvari-Vigh, A., Weill, C., et al. (1994). Ann. NY Acad. Sci. 739, 228–243.PubMedCrossRefGoogle Scholar
  19. 19.
    Buck, J., Sinclair, M. L., Schapal, L., Cann, M. J., and Levin, L. R. (1999). Proc. Natl. Acad. Sci. USA 96, 79–84.PubMedCrossRefGoogle Scholar
  20. 20.
    Sinclair, M. L., Wang, X. Y., Mattia, M., et al. (2000). Mol. Reprod. Dev. 56, 6–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Luconi, M., Barni, T., Vannelli, G. B., et al. (1998). Biol. Reprod. 58, 1476–1489.PubMedCrossRefGoogle Scholar
  22. 22.
    Lu, Q., Sun, Q. Y., Breitbart, H., and Chen, D. Y. (1999). Arch. Androl. 43, 55–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Wadewitz, A. G., Winer, M. A., and Wolgemuth, D. J. (1993). Oncogene 8, 1055–1062.PubMedGoogle Scholar
  24. 24.
    Sun, Q. Y., Breitbart, H., and Schatten, H. (1999). Reprod. Fertil. Dev. 11, 443–450.PubMedCrossRefGoogle Scholar
  25. 25.
    Berruti, G. (2000). Exp. Cell Res. 257, 172–179.PubMedCrossRefGoogle Scholar
  26. 26.
    Berruti, G. (2003). Cell. Mol. Biol. (Noisy-le-grand) 49, 381–388.Google Scholar
  27. 27.
    El-Gehani, F., Tena-Sempere, M., and Huhtaniemi, I. (1998). Mol. Cell. Endocrinol. 140, 175–178.PubMedCrossRefGoogle Scholar
  28. 28.
    El-Gehani, F., Tena-Sempere, M., and Huhtaniemi, I. (2000). Biol. Reprod. 63, 1482–1489.PubMedCrossRefGoogle Scholar
  29. 29.
    Krempels, K., Usdin, T. B., Harta, G., and Mezey, E. (1995). Neuropeptides 29, 315–320.PubMedCrossRefGoogle Scholar
  30. 30.
    Daniel, P. B., Kieffer, T. J., Leech, C. A., and Habener, J. F. (2001). J. Biol. Chem. 276, 12938–12944.PubMedCrossRefGoogle Scholar
  31. 31.
    Spengler, D., Waeber, C., Pantaloni, C., et al. (1993). Nature 365, 170–175.PubMedCrossRefGoogle Scholar
  32. 32.
    Monts, B. S., Lee, W. H., Breyer, P. R., et al. (1995). Endocrine 3, 505–510.Google Scholar
  33. 33.
    Berry, S. A., Srivastava, C. H., Rubin, L. R., Phipps, W. R., and Pescovitz, O. H. (1992). J. Clin. Endocrinol. Metab. 75, 281–284.PubMedCrossRefGoogle Scholar
  34. 34.
    Srivastava, C. H., Monts, B. S., Rothrock, J. K., Peredo, M. J., and Pescovitz, O. H. (1995). Endocrinology 136, 1502–1508.PubMedCrossRefGoogle Scholar
  35. 35.
    Mbikay, M., Tadros, H., Ishida, N., et al. (1997). Proc. Natl. Acad. Sci. USA 94, 6842–6846.PubMedCrossRefGoogle Scholar
  36. 36.
    Gray, S. L., Cummings, K. J., Jirik, F. R., and Sherwood, N. M. (2001). Mol. Endocrinol. 15, 1739–1747.PubMedCrossRefGoogle Scholar
  37. 37.
    Hashimoto, H., Shintani, N., Tanaka, K., et al. (2001). Proc. Natl. Acad. Sci. USA 98, 13355–13360.PubMedCrossRefGoogle Scholar
  38. 38.
    Hamelink, C., Tjurmina, O., Damadzic, R., et al. (2002). Proc. Natl. Acad. Sci. USA 99, 461–466.PubMedCrossRefGoogle Scholar
  39. 39.
    Seidah, N. G., Day, R., Hamelin, J., Gaspar, A., Collard, M. W., and Chretien, M. (1992). Mol. Endocrinol. 6, 1559–1570.PubMedCrossRefGoogle Scholar
  40. 40.
    Nakayama, K., Kim, W. S., Torii, S., et al. (1992). J. Biol. Chem. 267, 5897–5900.PubMedGoogle Scholar
  41. 41.
    Li, M., Nakayama, K., Shuto, Y., Somogyvari-Vigh, A., and Arimura, A. (1998). Peptides 19, 259–268.PubMedCrossRefGoogle Scholar
  42. 42.
    Basak, A., Toure, B. B., Lazure, C., Mbikay, M., Chretien, M., and Seidah, N. G. (1999). Biochem. J. 343(Pt. 1), 29–37.PubMedCrossRefGoogle Scholar
  43. 43.
    Li, M., Mbikay, M., Nakayama, K., Miyata, A., and Arimura, A. (2000). Ann. NY Acad. Sci. 921, 333–339.PubMedCrossRefGoogle Scholar
  44. 44.
    Li, M., Mbikay, M., and Arimura, A. (2000). Endocrinology 141, 3723–3730.PubMedCrossRefGoogle Scholar
  45. 45.
    Heindel, J. J., Powell, C. J., Paschall, C. S., Arimura, A., and Culler, M. D. (1992). Biol. Reprod. 47, 800–806.PubMedCrossRefGoogle Scholar
  46. 46.
    Rossato, M., Nogara, A., Gottardello, F., Bordon, P., and Foresta, C. (1997). Endocrinology 138, 3228–3235.PubMedCrossRefGoogle Scholar
  47. 47.
    Hueso, C., Carmena, M. J., and Prieto, J. C. (1989). Biochem. Int. 19, 951–958.PubMedGoogle Scholar
  48. 48.
    Sreedharan, S. P., Huang, J. X., Cheung, M. C., and Goetzl, E. J. (1995). Proc. Natl. Acad. Sci. USA 92, 2939–2943.PubMedCrossRefGoogle Scholar
  49. 49.
    El-Gehani, F., Tena-Sempere, M., and Huhtaniemi, I. (1998). Endocrinology 139, 1474–1480.PubMedCrossRefGoogle Scholar
  50. 50.
    Re, R. (2003). Am. J. Physiol. Heart Circ. Physiol. 284, H751-H757.PubMedGoogle Scholar
  51. 51.
    Cann, M. J., Chung, E., and Levin, L. R. (2000). Dev. Genes Evol. 210, 200–206.PubMedCrossRefGoogle Scholar
  52. 52.
    Lazazzera, B. A. (2001). Peptides 22, 1519–1527.PubMedCrossRefGoogle Scholar
  53. 53.
    McRory, J. and Sherwood, N. M. (1997). Endocrinology 138, 2380–2390.PubMedCrossRefGoogle Scholar
  54. 54.
    Srivastava, C. H., Collard, M. W., Rothrock, J. K., Peredo, M. J., Berry, S. A., and Pescovitz, O. H. (1993). Endocrinology 133, 83–89.PubMedCrossRefGoogle Scholar
  55. 55.
    Fabbri, A., Ciocca, D. R., Ciampani, T., Wang, J., and Dufau, M. L. (1995). Endocrinology 136, 2303–2308.PubMedCrossRefGoogle Scholar
  56. 56.
    Breyer, P. R., Rothrock, J. K., Beaudry, N., and Pescovitz, O. H. (1996). Endocrinology 137, 2159–2162.PubMedCrossRefGoogle Scholar
  57. 57.
    Ohta, M., Funakoshi, S., Kawasaki, T., and Itoh, N. (1992). Biochem. Biophys. Res. Commun. 183, 390–395.PubMedCrossRefGoogle Scholar
  58. 58.
    du Plessis, S. S., Page, C., and Franken, D. R. (2001). Andrologia 33, 337–342.PubMedCrossRefGoogle Scholar
  59. 59.
    de Lamirande, E. and Gagnon, C. (2002). Mol. Hum. Reprod. 8, 124–135.PubMedCrossRefGoogle Scholar
  60. 60.
    Bellve, A. R. (1993). Methods Enzymol. 225, 84–113.PubMedCrossRefGoogle Scholar
  61. 61.
    Romrell, L. J., Bellve, A. R., and Fawcett, D. W. (1976). Dev. Biol. 49, 119–131.PubMedCrossRefGoogle Scholar
  62. 62.
    Bellve, A. R., Millette, C. F., Bhatnagar, Y. M., and O’Brien, D. A. (1977). J. Histochem. Cytochem. 25, 480–494.PubMedGoogle Scholar
  63. 63.
    Bellve, A. R., Cavicchia, J. C., Millette, C. F., O’Brien, D. A., Bhatnagar, Y. M., and Dym, M. (1977). J. Cell Biol. 74, 68–85.PubMedCrossRefGoogle Scholar
  64. 64.
    Gerton, G. L. and Millette, C. F. (1986). Biol. Reprod. 35, 1025–1035.PubMedCrossRefGoogle Scholar
  65. 65.
    Joshi, M. S., Anakwe, O. O., and Gerton, G. L. (1990). J. Androl. 11, 120–130.PubMedGoogle Scholar
  66. 66.
    Lessley, B. A. and Garner, D. L. (1983). Biol. Reprod. 28, 447–459.PubMedCrossRefGoogle Scholar
  67. 67.
    Hinton, R. and Mullock, B. (1997). In: Subcellular fractionation—a practical approach. Graham, J. M. and Rickwood, D. (eds.). Oxford University Press: Oxford, UK, pp. 31–69.Google Scholar
  68. 68.
    Levin, L. R. and Reed, R. R. (1995). J. Biol. Chem. 270, 7573–7579.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Min Li
    • 1
  • Hisayuki Funahashi
    • 2
  • Majambu Mbikay
    • 3
  • Seiji Shioda
    • 1
    • 2
  • Akira Arimura
    • 1
    Email author
  1. 1.U.S.-Japan Biomedical Research Laboratories, Department of MedicineTulane University School of MedicineNew Orleans
  2. 2.Department of AnatomyShowa University School of MedicineTokyoJapan
  3. 3.Protein Chemistry Center, Loeb Health Research InstituteOttawa Hospital Medical SchoolOttawaCanada

Personalised recommendations