, Volume 22, Issue 3, pp 275–284 | Cite as

The food contaminants bisphenol A and 4-nonylphenol act as agonists for estrogen receptor α in MCF7 breast cancer cells

  • Adele Vivacqua
  • Anna Grazia Recchia
  • Giovanna Fasanella
  • Sabrina Gabriele
  • Amalia Carpino
  • Vittoria Rago
  • Maria Luisa Di Gioia
  • Antonella Leggio
  • Daniela Bonofiglio
  • Angelo Liguori
  • Marcello Maggiolini


Xenoestrogens are chemically distinct industrial products potentially able to disrupt the endocrine system by mimicking the action of endogenous steroid hormones. Among such compounds, the ubiquitous environmental contaminants bisphenol A (BPA) and 4-nonylphenol (NPH) may promote adverse effects in humans triggering estrogenic signals in target tissues. Following a research program on human exposure to endocrine disruptors, we found contamination of fresh food by BPA and NPH. More important, these contaminants were found to display estrogen-like activity using as a model system the estrogen-dependent MCF7 breast cancer cells (MCF7wt); its variant named MCF7SH, which is hormone-independent but still ERα-positive, and the steroid receptor-negative human cervical carcinoma HeLa cells. In transfection experiments BPA and NPH activated in a direct manner the endogenous ERα in MCF7 wt and MCF7SH cells, as the antiestrogen hydroxytamoxifen was able to reverse both responses. Moreover, only the hormone-binding domains of ERα and ERβ expressed by chimeric proteins in HeLa cells were sufficient to elicit the transcriptional activity upon BPA and NPH treatments. Transfecting the same cell line with ERα mutants, both contaminants triggered an estrogen-like response. These transactivation properties were interestingly supported in MCF7wt cells by the autoregulation of ERα which was assessed by RT-PCR for the mRNA evaluation and by immunoblotting and immunocytochemistry for the determination of protein levels. The ability of BPA and NPH to modulate gene expression was further confirmed by the upregulation of an estrogen target gene like pS2. As a biological counterpart, concentrations of xenoestrogens eliciting transcriptional activity were able to stimulate the proliferation of MCF7wt and MCFSH cells. Only NPH at a dose likely too high to be of any physiological relevance induced a severe cytotoxicity in an ERα-independent manner as ascertained in HeLa cells. The estrogenic effects of such industrial agents together with an increasing widespread human exposure should be taken into account for the potential influence also on hormone-dependent breast cancer disease.

Key Words

Bisphenol A 4-nonylphenol estrogens estrogen receptor MCF7 breast cancer cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fang, H., Tong, W., Shi, L. M., et al. (2001). Chem. Res. Toxicol. 14, 280–294.PubMedCrossRefGoogle Scholar
  2. 2.
    Kavlock, R. J., Daston, G. P., De Rosa, C., et al. (1996). Environ. Health Perpect. 104, 715–740.CrossRefGoogle Scholar
  3. 3.
    Markey, C. M., Rubin, B. S., Soto, A. M., and Sonnenschein, C. (2003). J. Steroid Biochem. Mol. Biol. 83, 235–244.CrossRefGoogle Scholar
  4. 4.
    Cooper, R. L. and Kavlock, R. J. (1997). J. Endocrinol. 152, 159–166.PubMedCrossRefGoogle Scholar
  5. 5.
    Masuyama, H., Hiramatsu, Y., Kunitomi, M., Kudo, T., and MacDonald, P. N. (2000). Mol. Endocrinol. 14, 421–428.PubMedCrossRefGoogle Scholar
  6. 6.
    Blume, B., Kietzmann, M., Kranke, P., Moder, M., Schrader, S., and Wahren, M. (2000). Environ. Health Stud. 36, 3–9.Google Scholar
  7. 7.
    Brotons, J. A., Olea-Serrano, M. F., Villalobos, M., Pedraza, V., and Olea, N. (1995). Environ. Health Perspect. 103, 608–612.PubMedCrossRefGoogle Scholar
  8. 8.
    Feldman, D. (1997). Endocrinology 138, 1777–1779.PubMedCrossRefGoogle Scholar
  9. 9.
    Guenther, K., Heinke, V., Thiele, B., Kleist, E., Prast, H., and Raecker, T. (2002). Environ. Sci. Technol. 36, 1676–1680.PubMedCrossRefGoogle Scholar
  10. 10.
    Olea, N., Pulsar, R., Perez, P., et al. (1996). Environ. Health Perspect. 104, 298–305.PubMedCrossRefGoogle Scholar
  11. 11.
    Gozzo, F. and Poupaert, J. H. (1998). J. Pharm. Belg. 53, 278–286.PubMedGoogle Scholar
  12. 12.
    Takai, Y., Tsutsumi, O., Ikezuki, Y., et al. (2000). Biochem. Biophys. Res. Commun. 270, 918–921.PubMedCrossRefGoogle Scholar
  13. 13.
    Kuiper, G. G. J. M., Lemmen, J. G., Carlsson, B., et al. (1998). Endocrinology 139, 4252–4263.PubMedCrossRefGoogle Scholar
  14. 14.
    Usami, M., Mitsunaga, K., and Ohno, Y. (2002). J. Steroid Biochem. Mol. Biol. 81, 47–55.PubMedCrossRefGoogle Scholar
  15. 15.
    Tora, L., White, J., Brou, C., et al. (1989). Cell 59, 477–487.PubMedCrossRefGoogle Scholar
  16. 16.
    Heery, D. M., Kalkhoven, E., Hoare, S., and Parker, M. G. (1997). Nature 387, 733–736.PubMedCrossRefGoogle Scholar
  17. 17.
    McKenna, N. J., Lanz, R. B., and O’Malley, B. W. (1999). Endocr. Rev. 20, 321–344.PubMedCrossRefGoogle Scholar
  18. 18.
    Beekman, J. M., Allan, G. F., Tsai, S. Y., Tsai, M. J., and O’Malley, B. W. (1993). Mol. Endocrinol. 7, 1266–1274.PubMedCrossRefGoogle Scholar
  19. 19.
    Hall, J. M., McDonnell, D. P., and Korach, K. S. (2002). Mol. Endocrinol. 16, 469–486.PubMedCrossRefGoogle Scholar
  20. 20.
    Brzozowski, A. M., Pike, A. C., Dauter, Z., et al. (1997). Nature 389, 753–758.PubMedCrossRefGoogle Scholar
  21. 21.
    Feng, W., Ribeiro, R. C., Wagner, R. L., et al. (1998). Science 280, 1747–1749.PubMedCrossRefGoogle Scholar
  22. 22.
    Paige, L. A., Christensen, D. J., Gron, H., et al. (1999). Proc. Natl. Acad. Sci. USA 96, 3999–4004.PubMedCrossRefGoogle Scholar
  23. 23.
    Meegan, M. J., Hughes, R. B., Lloyd, D. G., Williams, D. C., and Zisterer, D. M. (2001). J. Med. Chem. 44, 1072–1084.PubMedCrossRefGoogle Scholar
  24. 24.
    Buelke-Sam, J., Bryant, H. U., and Francis, P. C. (1998). Reprod. Toxicol. 12, 217–221.PubMedCrossRefGoogle Scholar
  25. 25.
    Jaiyesimi, I. A., Buzdar, A. U., Decker, D. A., and Hortobagyi, G. N. (1995). J. Clin. Oncol. 13, 513–529.PubMedGoogle Scholar
  26. 26.
    Jordan, V. C. and Morrow, M. (1994). Eur. J. Cancer 30, 1714–1721.CrossRefGoogle Scholar
  27. 27.
    Turner, C. H., Sato, M., and Bryant, H. U. (1994). Endocrinology 135, 2001–2005.PubMedCrossRefGoogle Scholar
  28. 28.
    Dowsett, M., Johnston, S. R., Iveson, T. J., and Smith, I. E. (1995). Lancet 25, 8948.Google Scholar
  29. 29.
    Labrie, F., Labrie, C., Belanger, A., et al. (1999). J. Steroid Biochem. Mol. Biol. 69, 51–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Sibonga, J. D., Dobnig, H., Harden, R. M., and Turner, R. T. (1998). Endocrinology 139, 3736–3742.PubMedCrossRefGoogle Scholar
  31. 31.
    Peterson, G. and Barnes, S. (1991). Biochem. Biophys. Res. Commun. 179, 661–667.PubMedCrossRefGoogle Scholar
  32. 32.
    Adlercreutz, H., Mousavi, Y., Clark, J., et al. (1992). J. Steroid Biochem. Mol. Biol. 41, 331–337.PubMedCrossRefGoogle Scholar
  33. 33.
    Maggiolini, M., Bonofiglio, D., Marsico, S., et al. (2001). Mol. Pharm. 60, 595–602.Google Scholar
  34. 34.
    Bergeron, R. M., Thompson, T. B., Leonard, L. S., Pluta, L., and Gaido, K. W. (1999). Mol. Cell. Endocrinol. 150, 179–187.PubMedCrossRefGoogle Scholar
  35. 35.
    Gaido, K. W., Leonard, L. S., Lovell, S., et al. (1997). Toxicol. Appl. Pharmacol. 143, 205–212.PubMedCrossRefGoogle Scholar
  36. 36.
    Gould, J. C., Leonard, L. S., Maness, S. C., et al. (1998). Mol. Cell. Endocrinol. 142, 203–214.PubMedCrossRefGoogle Scholar
  37. 37.
    Howdeshell, K. L., Hotchkiss, A. K., Thayer, K. A., Vandenbergh, J. G., and vom Saal, F. S. (1999). Nature 401, 763–764.PubMedCrossRefGoogle Scholar
  38. 38.
    Kim, H. S., Han, S. Y., Yoo, S. D., Lee, B. M., and Park, K. L. (2001). J. Toxicol. Sci. 26, 111–118.PubMedCrossRefGoogle Scholar
  39. 39.
    Krishnan, A. V., Stathis, P., Permuth, S. F., Tokes, L., and Feldman, D. (1993). Endocrinology 132, 2279–2286.PubMedCrossRefGoogle Scholar
  40. 40.
    Matthews, J. B., Twomey, K., and Zacharewski, T. R. (2001). Chem. Res. Toxicol. 14, 149–157.PubMedCrossRefGoogle Scholar
  41. 41.
    Nagel, S. C., vom Saal, F. S., Thayer, K. A., Dhar, M. G., Boechler, M., and Welshons, W. V. (1997). Environ. Health Perspect. 105, 70–76.PubMedCrossRefGoogle Scholar
  42. 42.
    Safe, S. H., Pallaroni, L., Yoon, K., et al. (2001). Reprod. Fertil. Dev. 13, 307–315.PubMedCrossRefGoogle Scholar
  43. 43.
    Steinmetz, R., Brown, N. G., Allen, D. L., Bigsby, R. M., and Ben-Jonathan, N. (1997). Endocrinology 138, 1780–1786.PubMedCrossRefGoogle Scholar
  44. 44.
    Steinmetz, R., Mitchner, N. A., Grant, A., Allen, D. L., Bigsby, R. M., and Ben-Jonathan, N. (1998). Endocrinology 139, 2741–2747.PubMedCrossRefGoogle Scholar
  45. 45.
    vom Saal, F. S., Cooke, P. S., Buchanan, D. L., et al. (1998). Toxicol. Ind. Health 14, 239–260.Google Scholar
  46. 46.
    Schafer, T. E., Lapp, C. A., Hanes, C. M., Lewis, J. B., Wataha, J. C., and Schuster, G. S. (1999). J. Biomed. Mater. Res. 45, 192–197.PubMedCrossRefGoogle Scholar
  47. 47.
    Soto, A. M., Justicia, H., Wray, J. W., and Sonnenschein, C. (1991). Environ. Health Perspect. 92, 167–173.PubMedCrossRefGoogle Scholar
  48. 48.
    Diel, P., Olff, S., Schmidt, S., and Michna, H. (2002). J. Steroid Biochem. Mol. Biol. 80, 61–70.PubMedCrossRefGoogle Scholar
  49. 49.
    Kalkhoven, E., Beraldi, E., Panno, M. L., De Winter, J. P., Thijssen, J. H., and van Der Burg, B. (1996). Int. J. Cancer 65, 682–687.PubMedCrossRefGoogle Scholar
  50. 50.
    Maggiolini, M., Donzè, O., Jeannin, E., Andò, S., and Picard, D. (1999). Cancer Res. 59, 4864–4869.PubMedGoogle Scholar
  51. 51.
    Ekena, K., Weis, K. E., Katzenellenbogen, J. A., and Katzenellenbogen, B. S. (1996). J. Biol. Chem. 271, 20053–20059.PubMedCrossRefGoogle Scholar
  52. 52.
    Santagati, S., Gianazza, E., Agrati, P., et al. (1997). Mol. Endocrinol. 11, 938–949.PubMedCrossRefGoogle Scholar
  53. 53.
    deGraffenried, L. A., Hilsenbeck, S. G., and Fuqua, S. A. (2002). J. Steroid Biochem. Mol. Biol. 82, 7–18.PubMedCrossRefGoogle Scholar
  54. 54.
    Safe, S. (2001). Vitam. Horm. 62, 231–252.PubMedGoogle Scholar
  55. 55.
    Anstead, G. M., Carlson, K. E., and Katzenellenbogen, J. A. (1997). Steroids 62, 268–303.PubMedCrossRefGoogle Scholar
  56. 56.
    Dodge, J. and Jones, C. (1999). In: Estrogens and antiestrogens: physiology and mechanisms of action of estrogens and antiestrogens. Oettel, M. and Schillinger, E. (eds.). Springer-Verlag: Berlin.Google Scholar
  57. 57.
    Shi, L. M., Fang, H., Tong, W., et al. (2001). J. Chem. Inf. Comput. Sci. 41, 186–195.PubMedCrossRefGoogle Scholar
  58. 58.
    Wijayaratne, A. L. and McDonnell, D. P. (2001). J. Biol. Chem. 276, 35684–35692.PubMedCrossRefGoogle Scholar
  59. 59.
    Jennie, W. D., Aldridge, T. C., and Brooks, A. N. (1998). J. Endocrinol. 158, 11–14.CrossRefGoogle Scholar
  60. 60.
    Htun, H., Holth, L. T., Walker, D., Davie, J. R., and Hager, G. L. (1999). Mol. Biol. Cell 10, 471–486.PubMedGoogle Scholar
  61. 61.
    Dauvois, S., White, R., and Parker, M. G. (1993). J. Cell Sci. 106, 1377–1388.PubMedGoogle Scholar
  62. 62.
    Rivas, A., Lacroix, M., Olea-Serrano, F., Laios, I., Leclercq, G., and Olea, N. (2002). J. Steroid Biochem. Mol. Biol. 82, 45–53.PubMedCrossRefGoogle Scholar
  63. 63.
    Shim, W., Conaway, M., Masamura, S., et al. (2000). Endocrinology 141, 396–405.PubMedCrossRefGoogle Scholar
  64. 64.
    Shimizu, M., Ohta, K., Matsumoto, Y., Fukuoka, M., Ohno, Y., and Ozawa, S. (2002). Toxicol. In Vivo 16, 549–556.CrossRefGoogle Scholar
  65. 65.
    Atkinson, A. and Roy, D. (1995). Biochem. Biophys. Res. Commun. 210, 424–433.PubMedCrossRefGoogle Scholar
  66. 66.
    Knaak, J. B. and Sullivan, L. J. (1966). Toxicol. Appl. Pharmacol. 8, 175–184.PubMedCrossRefGoogle Scholar
  67. 67.
    Bunone, G., Briand, P. A., Miksicek, R. J., and Picard, D. (1996). EMBO J. 15, 2174–2183.PubMedGoogle Scholar
  68. 68.
    Webb, P., Nguyen, P., Shinsako, J., et al. (1998). Mol. Endocrinol. 12, 1605–1618.PubMedCrossRefGoogle Scholar
  69. 69.
    Seipel, K., Georgiev, O., and Shaffner, W. (1992). EMBO J. 11, 4961–4968.PubMedGoogle Scholar
  70. 70.
    Maggiolini, M., Donzé, O., and Picard, D. (1999). Biol. Chem. 380, 695–697.PubMedCrossRefGoogle Scholar
  71. 71.
    Brown, A. M., Jeltsch, J. M., Roberts, M., and Chambon, P. (1984). Proc. Natl. Acad. Sci. USA 81, 6344–6348.PubMedCrossRefGoogle Scholar
  72. 72.
    Laborda, J. (1991). Nucleic Acids Res. 19, 3998.PubMedCrossRefGoogle Scholar
  73. 73.
    Egger, D. and Bienz, K. (1994). Mol. Biotechnol. 3, 289–305.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Adele Vivacqua
    • 1
  • Anna Grazia Recchia
    • 1
  • Giovanna Fasanella
    • 1
  • Sabrina Gabriele
    • 1
  • Amalia Carpino
    • 2
  • Vittoria Rago
    • 2
  • Maria Luisa Di Gioia
    • 3
  • Antonella Leggio
    • 3
  • Daniela Bonofiglio
    • 1
  • Angelo Liguori
    • 3
  • Marcello Maggiolini
    • 1
  1. 1.Department of Pharmaco-BiologyUniversity of CalabriaRende (CS)Italy
  2. 2.Department of Cellular BiologyUniversity of CalabriaRende (CS)Italy
  3. 3.Department of ChemistryUniversity of CalabriaRende (CS)Italy

Personalised recommendations