Endocrine

, Volume 22, Issue 3, pp 257–265 | Cite as

Agouti-related protein (AGRP) is conserved and regulated by metabolic state in the zebrafish, Danio rerio

  • Youngsup Song
  • Gregory Golling
  • Theresa L. Thacker
  • Roger D. Cone
Article

Abstract

Agouti-related protein (AGRP) and proopiomelanocortin (POMC) genes encode secreted hypothalamic factors regulated by metabolic state in mammals and are involved in energy homeostasis. The zebrafish, Danio rerio, is a model system for forward genetics in verte-brates: POMC and AGRP in this organism have not been well characterized. Toward this end, AGRP and POMC were cloned from zebrafish. Zebrafish AGRP cDNA encodes a 127-amino-acid protein 36% and 40% identical to human and mouse AGRP, respectively. Zebrafish POMC cDNA encodes a 222-amino-acid preprohormone. Sequence identity to the mammalian ortholog is about 50%. Zebrafish AGRP and POMC transcripts were detected at 24 h post-fertilization (hpf) by RTPCR, and in situ hybridization demonstrated zebrafish AGRP mRNA exclusively in hypothalamus and POMC mRNA in hypothalamus and pituitary. Fasting did not alter POMC transcript levels, while AGRP transcripts were significantly upregulated. The ratio of AGRP/POMC transcripts in adult brain was increased up to threefold by fasting. These results demonstrate that the melanocortin system is regulated by metabolic state in zebrafish, and this finding thus provides a vertebrate system for the genetic analysis of the role of the melanocortin system in energy homeostasis.

Key Words

Agouti-related protein (AGRP) zebrafish melanocortin energy homeostasis feeding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cone, R. D. (1999). Trends Endocrinol. Metab. 10, 211–215.PubMedCrossRefGoogle Scholar
  2. 2.
    Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J., and Cone, R. D. (1997). Nature 385, 165–168.PubMedCrossRefGoogle Scholar
  3. 3.
    Huszar, D., Lynch, C. A., Fairchild-Huntress, V., et al. (1997). Cell 88, 131–141.PubMedCrossRefGoogle Scholar
  4. 4.
    Vaisse, C., Clement, K., Guy-Grand, B., and Froguel, P. (1998). Nat. Genet. 20, 113–114.PubMedCrossRefGoogle Scholar
  5. 5.
    Yeo, G. S. H., Farooqi, I. S., Aminian, S., Halsall, D. J., Stanhope, R. G., and O’Rahilly, S. (1998). Nat. Genet. 20, 111–112.PubMedCrossRefGoogle Scholar
  6. 6.
    Roselli-Rehfuss, L., Mountjoy, K., Robbins, L., et al. (1993). Proc. Natl. Acad. Sci. USA 90, 8856–8860.PubMedCrossRefGoogle Scholar
  7. 7.
    Mountjoy, K., Mortrud, M., Low, M., et al. (1994). Mol. Endocrinol. 8, 1298–1308.PubMedCrossRefGoogle Scholar
  8. 8.
    Butler, A. A. and Cone, R. D. (2002). Neuropeptides 36, 77–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Cone, R. D., Cowley, M. A., Butler, A. A., Fan, W., Marks, D. L., and Low, M. J. (2001). Int. J. Obes. Relat. Metab. Disord. 25(Suppl. 5), S63-S67.PubMedCrossRefGoogle Scholar
  10. 10.
    Bagnol, T., Lu, X. Y., Kaelin, C. B., et al. (1999). J. Neurosci. 19, RC26.Google Scholar
  11. 11.
    Cowley, M. A., Smart, J. L., Rubinstein, M., et al. (2001). Nature 411, 480–484.PubMedCrossRefGoogle Scholar
  12. 12.
    Marks, D. L., Butler, A. A., Turner, R., Brookhart, G., and Cone, R. D. (2003). Endocrinology 144, 1513–1523.PubMedCrossRefGoogle Scholar
  13. 13.
    Shutter, J. R., Graham, M., Kinsey, A. C., Scully, S., Luthy, R., and Stark, K. L. (1997). Genes Dev. 11, 593–602.PubMedGoogle Scholar
  14. 14.
    Ollmann, M. M., Wilson, B. D., Yang, Y.-K., et al. (1997). Science 278, 135–137.PubMedCrossRefGoogle Scholar
  15. 15.
    Hahn, T. M., Breininger, J. F., Baskin, D. G., and Schwartz, M. W. (1999). Nat. Neurosci. 1, 271–272.Google Scholar
  16. 16.
    Haskell-Luevano, C., Chen, P., Li, C., et al. (1999). Endocrinology 140, 1408–1415.PubMedCrossRefGoogle Scholar
  17. 17.
    Broberger, C., Johansson, C., Schalling, M., and Hokfelt, T. (1998). Proc. Natl. Acad. Sci. USA 95, 15043–15048.PubMedCrossRefGoogle Scholar
  18. 18.
    Lin, X., Volkoff, H., Narnaware, Y., Bernier, N. J., Peyon, P., and Peter, R. E. (2000). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126, 415–434.PubMedCrossRefGoogle Scholar
  19. 19.
    Takahashi, A., Amemiya, Y., Sarashi, M., Sower, S. A., and Kawauchi, H. (1995). Biochem. Biophys. Res. Commin. 213, 490–498.CrossRefGoogle Scholar
  20. 20.
    Dores, R. M. (1990). Prog. Clin. Biol. Res. 342, 22–27.PubMedGoogle Scholar
  21. 21.
    Hansen, I. A., To, T. T., Wortmann, S., et al. (2003). Biochem. Biophys. Res. Commun. 303, 1121–1128.PubMedCrossRefGoogle Scholar
  22. 22.
    Chiba, A. (2001). Gen. Comp. Endocrinol. 122, 287–295.PubMedCrossRefGoogle Scholar
  23. 23.
    Logan, D. W., Bryson-Richardson, R. J., Pagan, K. E., Taylor, M. S., Currie, P. D., and Jackson, I. J. (2003). Genomics 81, 184–191.PubMedCrossRefGoogle Scholar
  24. 24.
    Ringholm, A., Fredriksson, R., Poliakova, N., et al. (2002). J. Neurochem. 82, 6–18.PubMedCrossRefGoogle Scholar
  25. 25.
    Cerda-Reverter, J. M., Ringholm, A., Schioth, H. B., and Peter, R. E. (2003). Endocrinology 144, 2336–2349.PubMedCrossRefGoogle Scholar
  26. 26.
    Cerda-Reverter, J. M. and Peter, R. E. (2003). Endocrinology 144, 4552–4561.PubMedCrossRefGoogle Scholar
  27. 27.
    Rossi, M., Kim, M. S., Morgan, D. G., et al. (1998). Endocrinology 139, 4428–4431.PubMedCrossRefGoogle Scholar
  28. 28.
    Bures, E. J., Hui, J. O., Young, Y., et al. (1998). Biochemistry 37, 12172–12177.PubMedCrossRefGoogle Scholar
  29. 29.
    Tota, M. R., Smith, T. S., Mao, C., et al. (1999). Biochemistry 38, 897–904.PubMedCrossRefGoogle Scholar
  30. 30.
    Liu, N. A., Huang, H., Yang, Z., et al. (2003). Mol. Endocrinol. 17, 959–966.PubMedCrossRefGoogle Scholar
  31. 31.
    Narnaware, Y. K., Peyon, P. P., Lin, X., and Peter, R. E. (2000). Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1025-R1034.PubMedGoogle Scholar
  32. 32.
    Westerfield, M. (1995). The zebrafish book. Eugene, OR: The University of Oregon Press.Google Scholar
  33. 33.
    Kimmel, C., Ballard, W., Kimmel, S., Ullmann, B., and Schilling, T. (1995). Dev. Dyn. 203, 253–310.PubMedGoogle Scholar
  34. 34.
    Imboden, M., Devignot, V., Korn, H., and Goblet, C. (2001). Neuroscience 103, 811–830.PubMedCrossRefGoogle Scholar
  35. 35.
    Willett, C. E., Zapata, A. G., Hopkins, N., and Steiner, L. A. (1997). Dev. Biol. 182, 331–341.PubMedCrossRefGoogle Scholar
  36. 36.
    Mizuno, T. M., Makimura, H., Silverstein, J., Roberts, J. L., Lopingco, T., and Mobbs, C. V. (1999). Endocrinology 140, 814–817.PubMedCrossRefGoogle Scholar
  37. 37.
    Phillips-Singh, D., Li, Q., Takeuchi, S., Ohkubo, T., Sharp, P. J., and Boswell, T. (2003). Cell Tissue Res. 313, 217–225.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Youngsup Song
    • 1
  • Gregory Golling
    • 2
  • Theresa L. Thacker
    • 2
  • Roger D. Cone
    • 1
  1. 1.Vollum InstituteOregon Health and Science UniversityPortland
  2. 2.Znomics, Inc.Portland

Personalised recommendations