, Volume 22, Issue 1, pp 19–24 | Cite as

Ghrelin and the endocrine pancreas

  • Fabio Broglio
  • Cristina Gottero
  • Andrea Benso
  • Flavia Prodam
  • Marco Volante
  • Silvia Destefanis
  • Carlotta Gauna
  • Giampiero Muccioli
  • Mauro Papotti
  • Aart Jan van der Lely
  • Ezio Ghigo


Ghrelin is a 28-amino-acid peptide predominantly produced by the stomach, while substantially lower amounts derive from other tissues including the pancreas. It is a natural ligand of the GH secretagogue (GHS) receptor (GHS-R1a) and strongly stimulates GH secretion, but acylation in serine 3 is needed for its activity. Ghrelin also possesses other endocrine and nonendocrine actions reflecting central and peripheral GHS-R distribution including the pancreas. The wide spectrum of ghrelin activities includes orexigenic effect, control of energy expenditure, and peripheral gastroenteropancreatic actions. Circulating ghrelin levels mostly reflect gastric secretion as indicated by evidence that they are reduced by 80% after gastrectomy and even after gastric by-pass surgery. Ghrelin secretion is increased in anorexia and cachexia but reduced in obesity, a notable exception being Prader-Willi syndrome. The negative association between ghrelin secretion and body weight is emphasized by evidence that weight increase and decrease reduces and augments circulating ghrelin levels in anorexia and obesity, respectively, and agrees with the clear negative association between ghrelin and insulin levels. In fact, ghrelin secretion is increased by fasting whereas it is decreased by glucose load as well as during euglycemic clamp but not after arginine or free fatty acid load in normal subjects; in physiological conditions, however, the most remarkable inhibitory input on ghrelin secretion is represented by somatostatin as well as by its natural analog cortistatin that concomitantly reduce β-cell secretion. This evidence indicates that the endocrine pancreas plays a role in directly or indirectly modulating ghrelin secretion. As anticipated, ghrelin, in turn, is expressed within the endocrine pancreas, although it is still matter of debate if it is expressed by β-, α-, or non-α/non-β cells. Moreover, GHS-R1a expression in the pancreas has been demonstrated by many authors. Some impact of synthetic GHS on insulin secretion and glucose metabolism had been reported in both animal and human studies. Depending on dose and experimental conditions ghrelin has been shown able to inhibit or stimulate insulin secretion in animals. In humans, ghrelin administration is followed by transient inhibition of insulin levels that surprisingly follows persistent increase in plasma glucose levels suggesting that ghrelin would also directly or indirectly activate glycogenolisis. Current studies indicate that ghrelin also blunts the insulin response to arginine but not that to oral glucose load in humans. These acute effects of ghrelin are independent of any cholinergic mediation and are not shared by synthetic, peptidyl GHS indicating they are likely mediated by a non-GHS-R1a receptor. These acute effects of ghrelin on insulin secretion would be short-lasting, and it has to be remembered that long-term treatment with synthetic non peptidyl GHS in healthy elderly subjects was followed by insulin resistance. In all, it is already clear that ghrelin has remarkable impact in modulating insulin secretion and glucose metabolism. Insulin and ghrelin secretions seem linked by a negative functional relationship that strengthens the hypothesized role of ghrelin in participating in the management of the neuroendocrine and metabolic response to variations in energy balance.

Key Words

Ghrelin GH secretagogues insulin glucose metabolism energy balance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., and Kangawa, K. (1999). Nature 402, 656–660.PubMedCrossRefGoogle Scholar
  2. 2.
    Kojima, M., Hosoda, H., and Kangawa, K. (2001). Horm. Res. 56, 93–97.PubMedCrossRefGoogle Scholar
  3. 3.
    Muccioli, G., Tschöp, M., Papotti, M., Deghenghi, R., Heiman, M., and Ghigo, E. (2002). Eur. J. Pharmacol. 440, 235–254.PubMedCrossRefGoogle Scholar
  4. 4.
    Gnanapavan, S., Kola, B., Bustin, S. A., et al. (2002). J. Clin. Endocrinol. Metab. 87, 2988–2991.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith, R. G., van der Ploeg, L. H., Howard, A. D., et al. (1997). Endocr. Rev. 18, 621–645.PubMedCrossRefGoogle Scholar
  6. 6.
    Kojima, M., Hosoda, H., Matsuo, H., and Kangawa, K. (2001). Trends Endocrinol. Metabol. 12, 118–122.CrossRefGoogle Scholar
  7. 7.
    Arvat, E., Maccario, M., Di Vito, L., et al. (2001). J. Clin. Endocrinol. Metab. 86, 1169–1174.PubMedCrossRefGoogle Scholar
  8. 8.
    Broglio, F., Benso, A., Gottero, C., et al. (2003). J. Endocrinol. Invest. 26, 192–196.PubMedGoogle Scholar
  9. 9.
    Papotti, M., Ghe, C., Cassoni, P., et al. (2000). J. Clin. Endocrinol. Metab. 85, 3803–3807.PubMedCrossRefGoogle Scholar
  10. 10.
    Volante, M., Allia, E., Gugliotta, P., et al. (2002). J. Clin. Endocrinol. Metab. 87, 1300–1308.PubMedCrossRefGoogle Scholar
  11. 11.
    Yoshihara, F., Kojima, M., Hosoda, H., Nakazato, M., and Kangawa, K. (2002). Curr. Opin. Clin. Nutr. Metab. Care 5, 391–395.PubMedCrossRefGoogle Scholar
  12. 12.
    Horvath, T. L., Diano, S., Sotonyi, P., Heiman M. L., and Tschop, M. (2001). Endocrinology 142, 4163–4169.PubMedCrossRefGoogle Scholar
  13. 13.
    Altman, J. (2002). Neuroendocrinology 76, 131–136.PubMedCrossRefGoogle Scholar
  14. 14.
    Friedman, J. M. (2000). Harvey Lect. 95, 107–136.Google Scholar
  15. 15.
    Saad, M. F., Bernaba, B., Hwu, C. M., et al. (2002). J. Clin. Endocrinol. Metab. 87, 3997–4000.PubMedCrossRefGoogle Scholar
  16. 16.
    Broglio, F., Benso, A., Gottero, C., et al. (2002). Clin. Endocrinol. (Oxf.) 57, 265–271.CrossRefGoogle Scholar
  17. 17.
    Flier, J. S. and Foster, D. (1998). In: Williams-Textbook of Endocrinology, 9th ed. Wilson, J. D. (ed.). Philadelphia, PA: W.B. Saunders.Google Scholar
  18. 18.
    Tannenbaum, G. S. and Bowers, C. Y. (2001). Endocrine 14, 21–27.PubMedCrossRefGoogle Scholar
  19. 19.
    Di Vito, L., Broglio, F., Benso, A., et al. (2002). Clin. Endocrinol. (Oxf.) 56, 643–648.CrossRefGoogle Scholar
  20. 20.
    Ghigo, E., Arvat, E., Gianotti, L., Maccario, M., and Camanni, F. (1999). In: The endocrine response to acute illness. Jenkins, R. C. and Ross, R. J. M. (eds.). Basel: Karger.Google Scholar
  21. 21.
    Ghigo, E., Arvat, E., Giordano, R., et al. (2001). Endocrine 14, 87–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Bluet-Pajot, M. T., Tolle, V., Zizzari, P., et al. (2001). Endocrine 14, 1–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Weikel, J. C., Wichniak, A., Ising, M., et al. (2002). Am. J. Physiol. Endocrinol. Metab. 284, E407-E415.PubMedGoogle Scholar
  24. 24.
    Tolle, V., Bassant, M. H., Zizzari, P., et al. (2002). Endocrinology 143, 1353–1361.PubMedCrossRefGoogle Scholar
  25. 25.
    Cummings, D. E., Purnell, J. Q., Frayo, R. S., Schmidova, K., Wisse, B. E., and Weigle, D. S. (2001). Diabetes 50, 1714–1719.PubMedCrossRefGoogle Scholar
  26. 26.
    Shuto, Y., Shibasaki, T., Otagiri, A., et al. (2002). J. Clin. Invest. 109, 1429–1436.PubMedCrossRefGoogle Scholar
  27. 27.
    Tschop, M., Weyer, C., Tataranni, P. A., Devanarayan, V., Ravussin, E., and Heiman, M. L. (2001). Diabetes 50, 707–709.PubMedCrossRefGoogle Scholar
  28. 28.
    Ariyasu, H., Takaya, K., Tagami, T., et al. (2001). J. Clin. Endocrinol. Metab. 86, 4753–4758.PubMedCrossRefGoogle Scholar
  29. 29.
    Shiiya, T., Nakazato, M., Mizuta, M., et al. (2002). J. Clin. Endocrinol. Metab. 87, 240–244.PubMedCrossRefGoogle Scholar
  30. 30.
    Bellone, S., Rapa, A., Vivenza, D., et al. (2001). J. Endocrinol. Invest. 25, RC13-RC15.Google Scholar
  31. 31.
    McCowen, K. C., Maykel, J. A., Bistrian, B. R., and Ling, P. R. (2002). J. Endocrinol. 175, R7-R11.PubMedCrossRefGoogle Scholar
  32. 32.
    Adeghate, E. and Ponery, A. S. (2002). J. Neuroendocrinol. 14, 555–560.PubMedCrossRefGoogle Scholar
  33. 33.
    Egido, E. M., Rodriguez-Gallardo, J., Silvestre, R. A., and Marco, J. (2002). Eur. J. Endocrinol. 146, 241–244.PubMedCrossRefGoogle Scholar
  34. 34.
    Bagnasco, M., Kalra, P. S., and Kalra, S. P. (2002). Endocrinology 143, 726–729.PubMedCrossRefGoogle Scholar
  35. 35.
    Shintani, M., Ogawa, Y., Ebihara, K., et al. (2001). Diabetes 50, 227–232.PubMedCrossRefGoogle Scholar
  36. 36.
    Inui, A. (2001). Nat. Rev. Neurosci. 2, 551–560.PubMedCrossRefGoogle Scholar
  37. 37.
    Cummings, D. E., Weigle, D. S., Frayo, R. S., et al. (2002). N. Engl. J. Med. 346, 1623–1630.PubMedCrossRefGoogle Scholar
  38. 38.
    Otto, B., Cuntz, U., Fruehauf, E., et al. (2001). Eur. J. Endocrinol. 145, R5-R9.Google Scholar
  39. 39.
    Hansen, T. K., Dall, R., Hosoda, H., et al. (2002). Clin. Endocrinol. 56, 203–206.CrossRefGoogle Scholar
  40. 40.
    Muller, A. F., Lamberts, S. W., Janssen, J. A., et al. (2002). Eur. J. Endocrinol. 146, 203–207.PubMedCrossRefGoogle Scholar
  41. 41.
    Tschop, M., Wawarta, R., Riepl, R. L., et al. (2001). J. Endocrinol. Invest. 24, RC19-RC21.PubMedGoogle Scholar
  42. 42.
    Nakagawa, E., Nagaya, N., Okumura, H., et al. (2002). Clin. Sci. (Lond.) 103, 325–328.Google Scholar
  43. 43.
    Lee, H. M., Wang, G., Englander, E. W., Kojima, M., and Greeley, G. H., Jr. (2002). Endocrinology 143, 185–190.PubMedCrossRefGoogle Scholar
  44. 44.
    Lucidi, P., Murdolo, G., Di Loreto, C., et al. (2002). Diabetes 51, 2911–2914.PubMedCrossRefGoogle Scholar
  45. 45.
    Toshinai, K., Mondal, M. S., Nakazato, M., et al. (2001). Biochem. Biophys. Res. Commun. 281, 1220–1225.PubMedCrossRefGoogle Scholar
  46. 46.
    Broglio, F., van Koetsveld, P., Benso, A., et al. (2002). J. Clin. Endocrinol. Metab. 87, 4829–4832.PubMedCrossRefGoogle Scholar
  47. 47.
    Patel, Y. C. (1999). Front. Neuroendocrinol. 20, 157–198.PubMedCrossRefGoogle Scholar
  48. 48.
    Kreienkamp, H. J. (1999). Results Probl. Cell. Differ. 26, 215–237.PubMedGoogle Scholar
  49. 49.
    Cummings, D. E., Clement, K., Purnell, J. Q., et al. (2002). Nat. Med. 8, 643–644.PubMedCrossRefGoogle Scholar
  50. 50.
    Tomasetto, C., Karam, S. M., Ribieras, S., et al. (2000). Gastroenterology 119, 395–405.PubMedCrossRefGoogle Scholar
  51. 51.
    Masuda, Y., Tanaka, T., Inomata, N., et al. (2000). Biochem. Biophys. Res. Commun. 276, 905–908.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang, W., Chen, M., Chen, X., Segura, B. J., and Mulholland, M. W. (2001). J. Physiol. 537, 231–236.PubMedCrossRefGoogle Scholar
  53. 53.
    Date, Y., Nakazato, M., Hashiguchi, S., et al. (2002). Diabetes 51, 124–129.PubMedCrossRefGoogle Scholar
  54. 54.
    Wierup, N., Svensson, H., Mulder, H., and Sundler, F. (2002). Regul. Pept. 107, 63–69.PubMedCrossRefGoogle Scholar
  55. 55.
    Clark, R. G., Thomas, G. B., Mortensen, D. L., et al. (1997). Endocrinology 138, 4316–4323.PubMedCrossRefGoogle Scholar
  56. 56.
    Chapman, I. M., Bach, M. A., van Cauter, E., et al. (1996). J. Clin. Endocrinol. Metab. 81, 4249–4257.PubMedCrossRefGoogle Scholar
  57. 57.
    Svensson, J., Lonn, L., Jansson, J. O., et al. (1998). J. Clin. Endocrinol. Metab. 83, 362–369.PubMedCrossRefGoogle Scholar
  58. 58.
    Broglio, F., Arvat, E., Benso, A., et al. (2001). J. Clin. Endocrinol. Metab. 86, 5083–5086.PubMedCrossRefGoogle Scholar
  59. 59.
    Broglio, F., Benso, A., Castiglioni, C., et al. (2003). J. Clin. Endocrinol. Metab. 88, 1537–1542.PubMedCrossRefGoogle Scholar
  60. 60.
    Murata, M., Okimura, Y., Iida, K., et al. (2002). J. Biol. Chem. 277, 5667–5674.PubMedCrossRefGoogle Scholar
  61. 61.
    Broglio, F., Gottero, C., Benso, A., et al. (2003). Clin. Endocrinol. (Oxf). 58, 92–98.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Fabio Broglio
    • 1
  • Cristina Gottero
    • 1
  • Andrea Benso
    • 1
  • Flavia Prodam
    • 1
  • Marco Volante
    • 2
  • Silvia Destefanis
    • 1
  • Carlotta Gauna
    • 4
  • Giampiero Muccioli
    • 3
  • Mauro Papotti
    • 2
  • Aart Jan van der Lely
    • 4
  • Ezio Ghigo
    • 1
  1. 1.Division of Endocrinology and Metabolism, Department of Internal MedicineUniversity of TurinTurinItaly
  2. 2.Department of Biomedical Sciences and OncologyDivision of Pathological AnatomyItaly
  3. 3.Department of Pharmacology and Forensic MedicineUniversity of TurinItaly
  4. 4.Division of Endocrinology, Department of Internal MedicineErasmus University of RotterdamThe Netherlands

Personalised recommendations