Advertisement

Endocrine

, Volume 21, Issue 1, pp 81–87 | Cite as

Estrogens and parkinson disease

Neuroprotective, symptomatic, neither, or both?
  • Rachel Saunders-PullmanEmail author
Article

Abstract

Parkinson disease is a neurodegenerative disorder caused by substantia nigra dopamine cell death and is characterized by bradykinesia, rigidity, rest tremor, and postural instability. Epidemiologic and clinical studies have suggested that gender and estrogen play a role in modulating Parkinson disease. The etiology of the estrogenic effect is unclear—it may be neuroprotective, symptomatic, or both. Retrospective studies suggest a possible neuroprotective role. Interventional studies have suggested a positive modulatory role or no role at all. While it is difficult to establish whether there is a true neuroprotective benefit of estrogen in the setting of even mild symptomatic benefit, laboratory data suggest such a neuroprotective role. Estrogen may act as an antiapoptotic agent, an antioxidant, or a neurotrophic modulating agent, promoting crosstalk with neurotrophic factors. The selective estrogen receptor modulators (SERMs) may also confer neuroprotection. However, prior to establishing the role of estrogen in Parkinson disease, additional study, including of the SERMs, is warranted.

Key Words

Parkinson disease estrogen selective estrogen receptor modulators levo-dopa nigrostriatal system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mahant, P. and Stacy, M. (2001). Neurol. Clin. 19, 553–563.PubMedCrossRefGoogle Scholar
  2. 2.
    Baldereschi, M., Di Carlo, A., Rocca, W. A., et al. (2000). Neurology 55, 1358–1363.PubMedGoogle Scholar
  3. 3.
    Bower, J. H., Maraganore, D. M., McDonnell, S. K., and Rocca, W. A. (1999). Neurology 52, 1214–1220.PubMedGoogle Scholar
  4. 4.
    Parkinson’s Study Group. (1996). Ann. Neurol. 39, 37–45.CrossRefGoogle Scholar
  5. 5.
    Lyons, K. E., Hubble, J. P., Troester, A., Pahwa, R., and Koller, W. C. (1998). Neurology 50, 1323–1326.Google Scholar
  6. 6.
    Garcia-Segura, L. M., Azcoitia, I., and DonCarlos, L. (2001). Prog. Neurobiol. 63, 29–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Sandyk, R. (1989). Int. J. Neurosci. 45, 119–122.PubMedGoogle Scholar
  8. 8.
    Saunders-Pullman, R., Gordon-Elliott, J., Parides, M., Fahn, S., Saunders, H., and Bressman, S. (1999). Neurology 52, 1417–1421.PubMedGoogle Scholar
  9. 9.
    Tsang, K.-L., Ho, S.-L., and Lo, S.-K. (2000). Neurology 54, 2292–2298.PubMedGoogle Scholar
  10. 10.
    Gibb, W. R. G. and Lees, A. J. (1988). J. Neurol. Neurosurg. Psychiatry 51, 745–752.PubMedCrossRefGoogle Scholar
  11. 11.
    Gibb, W. R. G., Scott, T., and Lees, A. J. (1991). Mov. Disord. 6, 2–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Harada, H., Nishikawa, S., and Takahashi, K. (1983). Arch. Neurol. 40, 151–154.PubMedGoogle Scholar
  13. 13.
    Kurland, L. T. (1958). In: Pathogenesis and treatment of parkinsonism. Field, W. (ed.). Charles C Thomas: Springfield, IL.Google Scholar
  14. 14.
    Schoenberg, B. S. (1986). Adv. Neurol. 45, 277–283.Google Scholar
  15. 15.
    Dluzen, D. and McDermott, J. (2000). J. Gender Specific Med. 3, 36–42.Google Scholar
  16. 16.
    Rajput, A. H., Offord, K. P., Beard, C. M., and Kurland, L. T. (1984). Ann. Neurol. 16, 278–283.PubMedCrossRefGoogle Scholar
  17. 17.
    Toran-Allerand, C., Singh, M., and Setalo, G. (1999). Front. Neuroendocrinol. 20, 97–121.PubMedCrossRefGoogle Scholar
  18. 18.
    Kuppers, E., Ivanova, T., Karolczak, M., Lazarov, N., Fohr, K., and Beyer, C. (2001). Horm. Behav. 40, 196–202.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang, J. Q., Cai, W. Q., Zhou, S., and Su, B. Y. (2002). Brain Res. 935, 73–80.PubMedCrossRefGoogle Scholar
  20. 20.
    Creutz, L. M. and Kritzer, M. F. (2002). J. Comp. Neurol. 446, 288–300.PubMedCrossRefGoogle Scholar
  21. 21.
    Nilsen, J., Mor, G., and Naftolin, F. (2000). J. Neurosci. 20, 8604–8609.Google Scholar
  22. 22.
    Wong, M., Thompson, T. L., and Moss, R. L. (1996). Crit. Rev. Neurobiol. 10, 189–203.PubMedGoogle Scholar
  23. 23.
    DiPaolo, T. (1994). Rev. Neurosci. 5, 27–41.Google Scholar
  24. 24.
    Becker, J. B. (1999). Pharmacol. Biochem. Behav. 64, 803–812.PubMedCrossRefGoogle Scholar
  25. 25.
    van Hartesveldt, C. and Joyce, J. N. (1986). Neurosci. Biobehav. Rev. 10, 1–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Pasqualini, C., Olivier, V., Guibert, B., Frain, O., and Leviel, V. (1995). J. Neurochem. 65, 1651–1657.PubMedCrossRefGoogle Scholar
  27. 27.
    McDermott, J. L., Liu, B., and Dluzen, D. E. (1994). Exp. Neurol. 125, 306–311.PubMedCrossRefGoogle Scholar
  28. 28.
    Morissette, M., Garcia-Segura, L. M., Belanger, A., and Di Paolo, T. (1992). Neuroscience 49, 893–902.PubMedCrossRefGoogle Scholar
  29. 29.
    Levesque, D. and Di Paolo, T. (1993). Biochem. Pharmacol. 45, 723–733.PubMedCrossRefGoogle Scholar
  30. 30.
    Roy, E. J., Buyer, D. R., and Licari, V. A. (1990). Brain Res. Bull. 25, 221–227.PubMedCrossRefGoogle Scholar
  31. 31.
    Hruska, R. E. (1986). J. Neurochem. 47, 1908–1915.PubMedCrossRefGoogle Scholar
  32. 32.
    Levesque, D. and Di Paolo, T. (1988). Neurosci. Lett. 88, 113–138.PubMedCrossRefGoogle Scholar
  33. 33.
    Ferreira, A. and Caceres, A. (1991). J. Neurosci. 11, 392–400.PubMedGoogle Scholar
  34. 34.
    Xie, T., Ho, S. L., and Ramsden, D. B. (1999). Mol. Pharmacol. 56, 31–38.PubMedGoogle Scholar
  35. 35.
    Cohn, C. K. and Axelrod, J. (1971). Life Sci. 10, 1351–1354.CrossRefGoogle Scholar
  36. 36.
    Chakravorty, S. G. and Halbreich, U. (1997). Psychopharmacol. Bull. 33, 229–233.PubMedGoogle Scholar
  37. 37.
    Scallet, A. C. (1999). Ann. NY Acad. Sci. 890, 123–132.CrossRefGoogle Scholar
  38. 38.
    Sawada, H., Ibi, M., Kihara, T., Urushitani, M., Akaike, A., and Shimohama, S. (1998). J. Neurosci. Res. 54, 707–719.PubMedCrossRefGoogle Scholar
  39. 39.
    Callier, S., Le Saux, M., Lhiaubet, A.-M., Di Paolo, T., Rostene, W., and Pelaprat, D. (2002). J. Neurochem. 80, 307–323.PubMedCrossRefGoogle Scholar
  40. 40.
    Dluzen, D. E., McDermott, J. L., and Liu, B. (1996). J. Neurochem. 66, 658–666.PubMedCrossRefGoogle Scholar
  41. 41.
    Cyr, M., Calon, F., Morissette, M., and Di Paolo, T. (2002). J. Psychiatry Neurosci. 27, 12–27.PubMedGoogle Scholar
  42. 42.
    Tanner, C. M., Ottman, R., Goldman, S. M., et al. (1999). JAMA 281, 341–346.PubMedCrossRefGoogle Scholar
  43. 43.
    Ascherio, A., Zhang, S. M., Hernan, M. A., et al. (2001). Ann. Neurol. 50, 56–63.PubMedCrossRefGoogle Scholar
  44. 44.
    Marder, K., Tang, M.-X., Alfaro, B., et al. (1998). Neurology 50, 1141–1143.PubMedGoogle Scholar
  45. 45.
    Benedetti, M. D., Maraganore, D., Bower, J. H., et al. (2001). Mov. Disord. 16, 830–837.PubMedCrossRefGoogle Scholar
  46. 46.
    Alexander, G. E., Crutcher, M. D., and DeLong, M. R. (1990). Prog. Brain Res. 85, 119–146.PubMedCrossRefGoogle Scholar
  47. 47.
    Quinn, N. P. and Marsden, C. D. (1986). Mov. Disord. 1, 85–87.PubMedCrossRefGoogle Scholar
  48. 48.
    Giladi, N. B. and Honigman, S. (1995). Neurology 45, 1028–1029.PubMedGoogle Scholar
  49. 49.
    Schipper, H. M. (1986). Neurol. Clin. 4, 721–751.PubMedGoogle Scholar
  50. 50.
    Bedard, P., Langelier, P., and Villeneuve, A. (1977). Lancet 2, 1367, 1368.PubMedCrossRefGoogle Scholar
  51. 51.
    Koller, W. C., Barr, A., and Biary, N. (1982). Neurology 32, 547–549.PubMedGoogle Scholar
  52. 52.
    Session, D. R., Pearlstone, M. M., Jewelewicz, R., and Kelly, A. C. (1994). Med. Hypotheses 42, 280–282.PubMedCrossRefGoogle Scholar
  53. 53.
    Komplioti, K., Comella, C., Jaglin, J. A., Leurgans, S., Raman, R., and Goetz, C. G. (2000). Neurology 55, 1572–1575.Google Scholar
  54. 54.
    Blanchet, P. J., Fang, J., Hyland, K., Arnold, L. A., Mouradian, M. M., and Chase, T. N. (1999). Neurology 53, 91–95.PubMedGoogle Scholar
  55. 55.
    Strijks, E., Kremer, J. A. M., and Horstink, M. W. I. M. (1999). Clin. Neuropharmacol. 22, 93–97.PubMedCrossRefGoogle Scholar
  56. 56.
    Boudikova, B., Szumlanski, C., Maidak, B., and Weinshilboum, R. (1990). Clin. Pharmacol. Ther. 48, 381–389.PubMedCrossRefGoogle Scholar
  57. 57.
    Grandbois, M., Morissette, M., Callier, S., and Di Paolo, T. (2000). Neuroreport 11, 343–346.PubMedCrossRefGoogle Scholar
  58. 58.
    Jacobs, D. M., Tang, M. X., Stern, Y., et al. (1998). Neurology 50, 368–373.PubMedGoogle Scholar
  59. 59.
    Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., et al. (1999). JAMA 281, 1197–1202.PubMedCrossRefGoogle Scholar
  60. 60.
    Rehman, H. U. and Masson, E. A. (2001). Age Ageing 30, 279–287.PubMedCrossRefGoogle Scholar
  61. 61.
    Okun, M. S., McDonald, W. M., and DeLong, M. R. (2002). Arch. Neurol. 59, 807–811.PubMedCrossRefGoogle Scholar
  62. 62.
    Veliskova, J. and Moshe, S. L. (2001). Ann. Neurol. 50, 596–601.PubMedCrossRefGoogle Scholar
  63. 63.
    Mayeux, R., Chen, J., Mirabello, E., et al. (1990). Neurology 40, 1513–1517.PubMedGoogle Scholar
  64. 64.
    Brown, R. G. and Marsden, C. D. (1984). Lancet 2, 1262–1265.PubMedCrossRefGoogle Scholar
  65. 65.
    Lees, A. J. and Smith, E. (1983). Brain 106, 257–270.PubMedCrossRefGoogle Scholar
  66. 66.
    Brown, R. G. and Marsden, C. D. (1990). Trends Neurosci. 13, 21–29.PubMedCrossRefGoogle Scholar
  67. 67.
    Levin, B. E., Llabre, M. M., and Weiner, W. J. (1989). Neurology 39, 557–561.PubMedGoogle Scholar
  68. 68.
    Sherwin, B. B. (1988). Psychoneuroendocrinology 13, 345–347.PubMedCrossRefGoogle Scholar
  69. 69.
    Verghese, J., Kuslansky, G., Katz, M. J., et al. (2000). Neurology 55, 872–874.PubMedGoogle Scholar
  70. 70.
    Writing Group for the Women’s Health Initiative Investigators. (2002). JAMA 288(3), 321–333.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  1. 1.Department of NeurologyAlbert Einstein College of Medicine and Beth Israel Medical CenterNew York

Personalised recommendations