Endocrine

, Volume 11, Issue 3, pp 257–267

Ovarian steroid action on tryptophan hydroxylase protein and serotonin compared to localization of ovarian steroid receptors in midbrain of guinea pigs

  • N. Z. Lu
  • T. A. Shlaes
  • C. Gundlah
  • S. E. Dziennis
  • R. E. Lyle
  • C. L. Bethea
Article

Abstract

The effect of estrogen (E) and progesterone (P) on the protein expression of the rate-limiting enzyme in serotonin synthesis, tryptophan hydroxylase (TPH), and the level of serotonin, in the hypothalamic terminal field was examined in guinea pigs. In addition, we questioned whether serotonin neurons of guinea pigs contain ovarian steroid receptors (estrogen receptor-α[ERα], estrogen receptor β[ERβ], progestin, receptors [PRs]) that could directly mediate, the actions of E or P. Western blot and densitometric analysis for TPH were used on raphe extracts from untreated-ovariectomized (OVX), OVX-E-treated (28d), and OVX-E+P-treated (14 d E+ 14 d E+P), guinea pigs. The medial basal hypothalami from the same animals were extracted and subjected to high-performance liquid chromatography analysis for serotonin, dopamine, 5-hydroxyindole acetic acid, and homovanillic acid. The brains from other aminals treated in an identical manner were perfusion fixed and examined for the colocalization of ERα plus serotonin and PR plus serotonin with double immunohistochemistry or for expression of ERβ mRNA with in situ hybridization. E and E+P treatment significantly increased TPH protein levels compared to the untreated control group (p<0.05), but TPH levels were similar in the E and E+P-treated groups. By contrast, serotonin (nanogram/milligram of protein) in the hypothalamus was significantly increased by E+P treatment, but not by E alone. Neither ERα nor PR proteins were detected within serotonin neurons of the guinea pig raphe nucleus. However, ERβ mRNA was expressed in the dorsal raphe. In summary, E alone increased TPH protein expression and the addition of P had no further effect, whereas E+P increased, hypothalamic serotonin and E alone had no effect. The localization of ERβ, but not ERα or PR, in the dorsal raphe nucleus suggests that E acting via ERβ within serotonin neurons increases expression of TPH, but that P acting via other neurons and transsynaptic stimulation may effect changes in TPH enzymatic activity, which in turn, would lead to an increase in serotonin synthesis.

Key Words

Serotonin tryptophan hydroxylase estrogen receptor-α estrogen receptor-β progestin receptor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azmitia, E. C. and Segal, M. (1978). J. Comp. Neurol. 179, 641–668.PubMedCrossRefGoogle Scholar
  2. 2.
    Sawchenko, P. E., Swanson, L. W., Steinbusch, H. W. M., and Verhofstad, A. A. J. (1983). Brain Res 277, 355–360.PubMedCrossRefGoogle Scholar
  3. 3.
    Jacobs, B. L. and Azmitia, E. C. (1992). Physiol., Rev. 72, 165–231.Google Scholar
  4. 4.
    Van de Kar, L. (1991). Annu. Rev. Pharmacol., Toxicol. 31, 289–320.CrossRefGoogle Scholar
  5. 5.
    Pecins-Thompson, M. and Bethea, C. L. (1997). Neuroendocrinology 65, 335–343.PubMedGoogle Scholar
  6. 6.
    Bethea, C. L., Hess, D. L., Widmann, A. A., and Henningfield, J. M. (1995). Neuroendocrinology 61, 695–703.PubMedGoogle Scholar
  7. 7.
    Mathiasen, J. R., Tomogane, H., and Voogt, J. L. (1992). Endocrinology 131, 2527–2532.PubMedCrossRefGoogle Scholar
  8. 8.
    Mistry, A. M., Vidal, G., and Voogt, J. L. (1991). Brain Res. 550, 239–246.PubMedCrossRefGoogle Scholar
  9. 9.
    Mistry, A. M., and Voogt, J. L. (1990). Life Sci. 47, 693–701.PubMedCrossRefGoogle Scholar
  10. 10.
    Maswood, S., Andrade, M., Caldarola-Pastuszka, M., and Uphouse, L. (1996). Neuropharmacology 35, 497–501.PubMedCrossRefGoogle Scholar
  11. 11.
    Jackson, A., and Uphouse, L. (1996). Horm. Behav. 30, 145–152.PubMedCrossRefGoogle Scholar
  12. 12.
    Eriksson, E., Hedberg, M. A., Andersch, B., and Sundblad, C. (1995). Neuropsychopharmacology 12, 167–176.PubMedCrossRefGoogle Scholar
  13. 13.
    Halbreich, U. and Tworek, H. (1993). Int. J. Psychiatry Med. 23, 1–27.PubMedCrossRefGoogle Scholar
  14. 14.
    Halbreich, U., Rojansky, N., Palter, S., Tworek, H., Hissin, P., and Wang, K. (1995). Biol. Psychiatry 37, 434–441.PubMedCrossRefGoogle Scholar
  15. 15.
    Mortola, J. F. (1994). Drug Safety 10, 160–169.PubMedGoogle Scholar
  16. 16.
    Steiner, M., Steinber S., Stewart, D., Carter, D., Berger, C., Reid, R., Grover, D., and Streiner D. (1995). N. Engl. J. Med. 332, 1529–1534.PubMedCrossRefGoogle Scholar
  17. 17.
    Kuhn, D. M., Arthur, R., Jr., and States, J. C. (1997). J. Neurochem. 68, 2220–2223.PubMedCrossRefGoogle Scholar
  18. 18.
    Johansen, P. A., Jennings, I., Cotton, R. G., and Kuhn, D. M. (1996). J. Neurochem. 66, 817–823.PubMedCrossRefGoogle Scholar
  19. 19.
    Bethea, C.L., Mirkes, S. J., Shively, C. A., Adams, M. R., and Williams, J. K. (2000). Biol. Psychiatry, in press.Google Scholar
  20. 20.
    Bethea, C. L. (1994). Neuroendocrinology 60, 50–61.PubMedGoogle Scholar
  21. 21.
    Bethea, C. L. (1993). Neuroendocrinology, 57, 1–6.PubMedGoogle Scholar
  22. 22.
    Gundlah, C., Kohama, S. G., Mirkes, S. J., Garyfallou, V. T., Urbanski, H. F., and Bethea, C. L. (1999). Endocr. Soc. 81, 234 (abstract P1-469).Google Scholar
  23. 23.
    Alves, S. E., Weiland, N. G., Hayashi, S., and McEwen, B. S. (1996). Soc. Neurosci. 22, 618 (abstract 246.17).Google Scholar
  24. 24.
    Alves, S. E., Weiland N. G., Hastings, N. B., Tanapat, P., and McEwen, B. S. (1997). Soc. Neurosci. 23, 1222 (abstract 484).Google Scholar
  25. 25.
    Alves, S. E., Weiland, N. G., Lopez, V., and McEwen, B. S. (1998). Soc. Neurosci. 24, 1101 (abstract 436).Google Scholar
  26. 26.
    Kennetat, G. A., Chaouloff, F., Marcou, M., and Curzon, G. (1988). Brain Res. 382, 416–421.CrossRefGoogle Scholar
  27. 27.
    Croix, D. and Franchimont, P. (1975). Neuroendocrinology 19, 1–11.PubMedGoogle Scholar
  28. 28.
    Van de Kar, L.D. (1989). Neurosci. Biobehav. Rev. 13, 237–246.PubMedCrossRefGoogle Scholar
  29. 29.
    Owens, M. J. and Nemeroff, C. B. (1994). Clin. Chem. 40, 288–295.PubMedGoogle Scholar
  30. 30.
    Turcotte, J. C. and Blaustein, J. D. (1993). J. Comp. Neurol. 328, 76–87.PubMedCrossRefGoogle Scholar
  31. 31.
    Shughrue, P. J., Lane, M. V., and Merchenthaler, I. (1997). J. Comp. Neurol. 388, 507–525.PubMedCrossRefGoogle Scholar
  32. 32.
    Beitz, A. J. (1990). In: The Human Neuvous System. Paxinos, G. (ed.), Academic, San Diego.Google Scholar
  33. 33.
    Beitz, A. J. (1990). J. Histochem. Cytochem. 38, 1755–1765.PubMedGoogle Scholar
  34. 34.
    Richards, J. G., Saura, J., Ulrich, J., and Da Prada, M. (1992). Psychopharmacology 106, S21-S23.PubMedCrossRefGoogle Scholar
  35. 35.
    Majewska, M. D. (1992). Prog. Neurobiol. 38, 379–395.PubMedCrossRefGoogle Scholar
  36. 36.
    Pecins-Thompson, M., Brown, N. A., Kohama, S. G., and Bethea, C. L. (1996). J. Neurosci. 16, 7021–7029.PubMedGoogle Scholar
  37. 37.
    Bradford, M. M. (1976). Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  38. 38.
    Dumas, S., Darmon, M. C., Delort, J., and Mallet, J. (1989). J. Neurosci. 24, 537–547.CrossRefGoogle Scholar
  39. 39.
    Resko, J. A., Norman, R. L., Niswender, G. D., and Spies, H. G. (1974). Endocrinology 94, 128–135.PubMedCrossRefGoogle Scholar
  40. 40.
    Resko, J. A., Ploem, J. G., and Stadelman, H. L. (1975). Endocrinology 97, 425–430.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1999

Authors and Affiliations

  • N. Z. Lu
    • 2
    • 3
  • T. A. Shlaes
    • 1
  • C. Gundlah
    • 1
  • S. E. Dziennis
    • 2
  • R. E. Lyle
    • 2
  • C. L. Bethea
    • 1
    • 2
    • 3
  1. 1.Divisions of Reproductive Sciences and NeuroscienceOregon Regional Primate Research CenterBeaverton
  2. 2.Department of Physiology/PharmacologyOregon Health Sciences UniversityPortland
  3. 3.Department of Biological SciencesPortland State UniversityPortland

Personalised recommendations