Tropomodulin expression in developing hearts of normal and Cardiac mutant mexican axolotl

  • Matthew D. McLean
  • Robert W. Zajdel
  • Syamalima Dube
  • Harold Thurston
  • Dipak K. Dube
Original Research

Abstract

In the axolotl, Ambystoma mexicanum, a simple, recessive cardiac-lethal mutation in gene “c” results in the hearts of c/c homozygous animals being deficient in sarcomeric tropomyosin (TM) and failing to form mature myofibrils. Subsequently, the mutant hearts do not beat. A three-step model of myofibril assembly recently developed in cell culture prompted a reassessment of the myofibril assembly process in mutant hearts using a relatively new late marker for thin filament assembly, tropomodulin (Tmod). This is, to the best of our knowledge, the first report of tropomodulin in an amphibian system. Tropomodulin antibodies were immunolocalized to the ends of the thin filaments. Tropomodulin was also found in discrete punctate spots in normal and mutant hearts, often in linear arrays suggestive of early myofibril formation. The tropomodulin spots assessed in stage 41/42 mutant hearts co-localized with antibodies to other myofibrillar proteins indicative of nascent myofibril formation. This suggests a failure of elongation/maturation of nascent myofibrils, which could be a consequence of decreased TM levels or increased Tmod/TM ratio. Unlike tropomyosin, there is no apparent decrease in the level of Tmod expression in mutant hearts.

Index Entries

Tropomodulin Ambystoma mexicanum 

References

  1. 1.
    Humphrey, R.R. (1972). Genetic and experimental studies on a mutant gene (c) determining absence of heart action in embryos of the Mexican axolotl (Ambystoma mexicanum). Dev. Biol. 27:365–375.PubMedCrossRefGoogle Scholar
  2. 2.
    Lemanski, L.F. (1973). Morphology of developing heart in cardiac lethal mutant Mexican axolotls, Ambystoma mexicanum. Dev. Biol. 33:312–333.PubMedCrossRefGoogle Scholar
  3. 3.
    Towbin, J.A. and Bowles, N.E. (2002). Cardiomyopathies and myofibril abnormalities, in Myofibrillogenesis (D.K. Dube, ed.), Birkhauser, Boston: pp. 237–264.Google Scholar
  4. 4.
    Sussman, M.A., Hamm-Alvarez, S.F., Vilalta, P.M., Welch, S., and Kedes, L. (1997). Involvement of phosphorylation in doxorubicin-mediated myofibril degeneration: an immunoflourescence microscopic analysis. Cric Res. 80: 52–61.Google Scholar
  5. 5.
    Fowler, V.M., Greenfield, N.J., and Moyer, J. (2003). Tropomodulin contains two actin filament pointed end-capping domains. J. Biol. Chem. 278:40,000–40,009.CrossRefGoogle Scholar
  6. 6.
    Fritz-Six, K.L., Cox, P.R., Xu, B., Gregorio, C.C., Zoghi, H.Y., and Fowler, V.M. (2003). Aberrant myofibril assembly in tropomodulin 1 null mice leads to aborted heart development and embryonic lethality. J. Cell. Biol. 163: 1033–1044.PubMedCrossRefGoogle Scholar
  7. 7.
    Ehler, E., Fowler, V.M., and Perriard, J-C. (2004). Myofibrillogenesis in the developing chicken heart: Role of actin isoforms and of the pointed end actin capping protein tropomodulin during thin filament assembly. Dev. Dyn. 229:745–755.PubMedCrossRefGoogle Scholar
  8. 8.
    Fowler, V.M. (1990). Tropomodulin: a cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J. Cell Biol. 111: 471–481.PubMedCrossRefGoogle Scholar
  9. 9.
    Gregorio, C.C., Weber, A., Bondad, M., Pennise, C.R., and Fowler, V.M. (1995). Requirement of pointed-end capping by tropomodulin to maintain actin filment length in embryonic chick cardiac myoctes. Nature 377:83–86.PubMedCrossRefGoogle Scholar
  10. 10.
    Sussman, M.A., Ito, M., Daniels, M.P., Flucher, B., Buranen, S., and Kedes, L. (1996). Chicken skeletal muscle tropomodulin: novel localization and characterization. Cell Tissue Res. 285:287–296.PubMedCrossRefGoogle Scholar
  11. 11.
    Weber, A., Pennise, C.R., Babcock, G.G., and Fowler, V.M. (1994). Tropomodulin caps the pointed ends of actin filaments [see comments]. J. Cell Biol. 127:1627–1635.PubMedCrossRefGoogle Scholar
  12. 12.
    Sussman, M.A., Baque, S., Uhm, C.S., et al. (1998). Altered expression of tropomodulin in cardiomyocytes disrupts the sar comeric structure of myofibrils. Circ. Res. 82: 94–105.PubMedGoogle Scholar
  13. 13.
    Sussman, M.A., Welch, S., Cambon, N., et al. (1998). Myofibril degeneration caused by tropomodulin overex-pression leads to dilated cardiomyopathy in juvenile mice. J. Clin. Invest. 101:51–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Dye, C.A., Lee, J.K., Atkinson, R.C., Brewster, R., Han, P.L., and Bellen, H.J. (1998). The Drosophila sanpodo gene controls sibling cell fate and encodes a tropomodulin homolog, an actin/tropomyosin-associated protein. Development 125:1845–1856.PubMedGoogle Scholar
  15. 15.
    Skeath, J.B. and Doe, C.Q. (1998). Sanpodo and Notch act in opposition to Numb to distinguish sibling neuron fates in the Drosophila CNS. Development 125:1857–1865.PubMedGoogle Scholar
  16. 16.
    Kong, K.Y. and Kedes, L. (2006). Leucine-135 of tropomodulin-1 regulates its association with tropomyosin, its celular localization and the integrity of sarcomeres. J. Biol. Chem. 281:9589–9599.PubMedCrossRefGoogle Scholar
  17. 17.
    Humphrey, R.R. (1968). A genetically determined absence of heart function in embryos of the Mexican axolotl (Ambystoma mexicanum). Anat. Rec. 162:475.Google Scholar
  18. 18.
    Smith, S.C. and Armstrong, J.B. (1990). Heart Induction in wild-type and cardiac mutant axolotl (Ambystoma mexicanum). J. Exp. Zool. 254:48–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Smith, S.C. and Armstrong, J.B. (1991). Heart development in normal and cardiac-lethal mutant axolotls: a model for the control of vertebrate cardiogenesis. Differentiation 47:129–134.PubMedCrossRefGoogle Scholar
  20. 20.
    Zajdel, R.W., McLean, M.D., Lemanski, S.L., et al. (1998). Ectopic expression of tropomyosin promotes myofibril-logenesis in mutant axolotl hearts. Dev. Dyn. 213:412–420.PubMedCrossRefGoogle Scholar
  21. 21.
    Zajdel, R.W., Denz, C.R., McLean, M.D., et al. (2005). Diminished myofibril organization in mutant axolotl hearts transfected with site-directed mutants of sarcomeric tropomyosins. Card. Vascular Toxicol. 5:75–90.Google Scholar
  22. 22.
    Bordzilovskaya, N., Detlaff T.A., Duhon S., and Malacinski, G.M. (1989). Developmental-stage series of axolotl embryos, in Developmental Biology of the Axolotl (J.B. Armstrong and G.M. Malacinski, ed.). Oxford University Press, NY: pp. 201–221.Google Scholar
  23. 23.
    Ward, S.M., Dube, D.K., Fransen, M.E., and Lemanski, L.F. (1996). Differential expression of C-protein isoforms in the developing heart of normal and cardiac lethal mutant axolotls (Ambystoma mexicanum). Dev. Dyn. 205:93–103.PubMedCrossRefGoogle Scholar
  24. 24.
    Bell, P., Rundquist, I., Svensson, I., and Collins, V.P. (1987). Use of cytofluorotomy to evaluate binding of antibodies to the cytoskeleton of cultured cells. J. Histochem. Cytochem. 35:1381–1388.PubMedGoogle Scholar
  25. 25.
    Dube, D.K., Parker, J.D., French, D.C., et al. (1991). Artificial mutants generated by the insertion of random oligonucleotides into the putative nucleoside binding site of the HSV-1 thymidine kinase gene. Biochemistry 30:11,760–11,767.CrossRefGoogle Scholar
  26. 26.
    Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory. Cold Spring Harbor, NY.Google Scholar
  27. 27.
    Rhee, D., Sanger, J.M., and Sanger, J.W. (1994). The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil. Cytoskeleton 28:1–24.PubMedCrossRefGoogle Scholar
  28. 28.
    Schultheiss, T., Lin, Z.X., Lu, M.H., et al. (1990). Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils. J. Cell Biol. 110:1159–1172.PubMedCrossRefGoogle Scholar
  29. 29.
    Fransen, M.E. and Lemanski, L.F. (1988). Myocardial cell relationships during morphogenesis in normal and cardiac lethal mutant axolotls, Ambystoma mexicanum. Am. J. Anat. 183:245–257.PubMedCrossRefGoogle Scholar
  30. 30.
    Fransen, M.E., and Lemanski, L.F. (1991) Extracellular matrix of the developing heart in normal and cardiac lethal mutant axolotls, Ambystoma mexicanum. Anat. Rec. 230: 387–405.PubMedCrossRefGoogle Scholar
  31. 31.
    Turnacioglu, K.K., Mittal, B., Dabiri, G.A., Sanger, J.M., and Sanger, J.W. (1997). Zeugmatin is part of the Z-band targeting region of titin. Cell Struct. Funct. 22:73–82.PubMedGoogle Scholar
  32. 32.
    Fowler, V.M. (1997). Capping actin filament growth: tropomodulin in muscle and nonmuscle cells. Soc. Gen. Physiol. Ser. 52:79–89.PubMedGoogle Scholar
  33. 33.
    Ito, M., Swanson, B., Sussman, M.A., Kedes, L., and Lyons, G. (1995). Cloning of tropomodulin cDNA and localization of gene transcripts during mouse embryogenesis. Dev. Biol. 167:317–328.PubMedCrossRefGoogle Scholar
  34. 34.
    Gregorio, C.C. and Fowler, V.M. (1995). Mechanisms of thin filament assembly in embryonic chick cardiac myocytes: tropomodulin requires tropomyosin for assembly. J. Cell Biol. 129:683–695.PubMedCrossRefGoogle Scholar
  35. 35.
    Linask, K.K. and Lash, J.W. (1998). Morphoregulatory mechanisms underlying early heart development: precardiac stages to the looping, tubular heart, in Living Morphogenesis of the Heart (M.V. de la Cruz and R.B. Markwald, eds.) Birkhauser, Boston: pp. 1–42.Google Scholar
  36. 36.
    La France, S. and Lemanski, L.F. 1994. Immnofluorescent confocal analysis of tropomyosin in developing hearts of normal and cardiac mutant axolotls. Ambystoma mexicanum. Int. J. Dev. Biol. 38:695–700.PubMedGoogle Scholar
  37. 37.
    Ehler, E., Rothen, B.M., Hämmerle, S.P., Komiyama, M., and Perriard, J.-C. (1999). Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J. Cell. Sci. 112:1529–1539.PubMedGoogle Scholar
  38. 38.
    Aeurbach, D., Rothen-Ruthishauser, B., Bantle, S., et al. (1997). Molecular mechanisms of myofibril assembly in heart. Cell. Struct. Funct. 22:139–146.CrossRefGoogle Scholar
  39. 39.
    Turnacioglu, K.K., Mittal, B., Dabiri, G.A., Sanger, J.M., and Sanger, J.W. (1997). An N-terminal fragment of titin coupled to green fluorescent protein localizes to the Z-bands in living muscle cells: overexpression leads to myofibril disassembly. Mol. Biol. Cell. 8:705–717.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Matthew D. McLean
    • 1
  • Robert W. Zajdel
    • 1
  • Syamalima Dube
    • 2
  • Harold Thurston
    • 2
  • Dipak K. Dube
    • 1
    • 2
  1. 1.Department of Cell and Developmental BiologySUNY Upstate Medical UniversitySyracuse
  2. 2.Department of MedicineSyracuse

Personalised recommendations