Cardiovascular Toxicology

, Volume 5, Issue 4, pp 345–354 | Cite as

Cardiovascular toxicities upon managanese exposure

Review

Abstract

Manganese (Mn)-induced Parkinsonism has been well documented; however, little attention has been devoted to Mn-induced cardiovascular dysfunction. This review summarizes literature data from both animal and human studies on Mn’s effect on cardiovascular function. Clinical and epidemiological evidence suggests that the incidence of abnormal electrocardiogram (ECG) is significantly higher in Mn-exposed workers than that in the control subjects. The main types of abnormal ECG include sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinister megacardia, and ST-T changes. The accelerated heart-beat and shortened P-R interval appear to be more prominent in fermale exposed workers than in their male counterparts. Mn-exposed workers display a mean diastolic blood pressure that is significantly lower than that of the control subjects, especially in the young and female exposed workers. Animal studies indicate that Mn is capable of quickly accumulating in heart tissue, resulting in acute or sub-acute cardiovascular disorders, such as a cute cardio-depression and hypotension. These toxic outcomes appear to be associated with Mn-induced mitochondrial damage and interaction with the calcium channel in the cardiovascular system.

Key Words

Managanese occupational exposure cardiovascular toxicity ECG hypotension vasodilatation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mena, I. (1980). Managanese. In: Metals in the Environment (Waldrom, H.E., ed.) Academic, London: pp. 199–219.Google Scholar
  2. 2.
    Bencko, V., and Cikrt M. (1984). Manganese: a review of occupational and environmental toxicology. J. Hyg. Epidemiol. Microbiol. Immunol. 28:139–148.PubMedGoogle Scholar
  3. 3.
    Li, G.J., Zhang, L., Lu, L., Wu, P., and Zheng, W. (2004). Occupational exposure to welding fume among welders: alterations of manganese, iron, zinc, copper, and lead in body fluids and the oxidative stress status. J. Occup. Environ. Med. 46:241–248.PubMedCrossRefGoogle Scholar
  4. 4.
    Davis, J.M., Jarabek, A.M., Mage, D.T., and Graham, J.A. (1999). Inhalation health risk assessment of MMT. Environ. Res. 80:103–104.PubMedCrossRefGoogle Scholar
  5. 5.
    World Health Organization (WHO) (1981). Environmental health criteria 17: Manganese. Geneva: pp. 1–110.Google Scholar
  6. 6.
    Crossgrove, J., and Zheng, W. (2004). Manganese toxicity upon overexposure. NMR Biomed. 17:544–553.PubMedCrossRefGoogle Scholar
  7. 7.
    Mergler, D., and Baldwin, M. (1997). Early manifestations of manganese neurotoxicity in humans: an update. Environ. Res. 73:92–100.PubMedCrossRefGoogle Scholar
  8. 8.
    Aschner, M., Erikson, K.M., and Dorman, D.C. (2005). Manganese dosimetry: species differences and implications for neurotoxicity. Crit. Rev. Toxicol. 35:1–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Kobert R. (1883). Zur pharmakologie des mangans und eisens. Arch. Exp. Pathol. 16:361–392.CrossRefGoogle Scholar
  10. 10.
    Schroeder, H.A., Perry, M.H., Dennis, G.E., and Mahoney, E.L. (1955). Pressor substances in arterial hypertension. V. Chemical and pharmacological characteristics of pherentasine. J. Exp. Med. 102:319–333.PubMedCrossRefGoogle Scholar
  11. 11.
    Schroeder, H.A., and Perry, M.H. (1955). Antihypertensive effect of metal binding agents. J. Lab. Clin. Med. 46: 416–422.PubMedGoogle Scholar
  12. 12.
    Kostial, K., Landeka, M., and Slat, B. (1974). Manganese ions and synaptic transmission in the superior cervical ganglion of the cat. Brit. J. Pharmacol. 51:231–235.Google Scholar
  13. 13.
    Agata, N., Tanaka, H., and Shigenobu, K. (1992). Effect of Mn2+ on neonatal and adult rat heart: initial depression and late augmentation of contractile force. Eur. J. Pharmacol. 222:223–226.PubMedCrossRefGoogle Scholar
  14. 14.
    Zeng, X.H., Chi, Y.M., Dong, G.S., Wan, H.J., Liu, X.L., Zeng, S.J., et al. (1990). An experimental study of the excess manganese on the injured myocardium effect in rat raised with food from the disease area. J. Chinese Endemic Dis. 9:281–284.Google Scholar
  15. 15.
    Zeng, X.H., Wan, H.J., Ao, L.H., Qi, L., Chi, Y.M., Zeng, S.J., et al. (1991). A study of the relationship between the contents of Se, Mn dietary and myocardial injury. J. Hearbind Med. Univ. 25:255–258.Google Scholar
  16. 16.
    Sui, J.M., Zhou, B.C., Zeng, X.H., Zeng, S.J., and Yu, W.H. (1990). Effect of managanese on the mobility of mitochondrial membrane in rat myocardium. J. Chinese Endemic Dis. 9:277–280.Google Scholar
  17. 17.
    Charash, B., Placek, E., Sos, T.A., and Kligfield, P. (1982). Dose-related effects of manganese on the canine electro-cardiogram. J. Electrocardiol. 15:149–152.PubMedCrossRefGoogle Scholar
  18. 18.
    Brurok, H., Berg, K., Sneen, L., Grant, D., Karlsson, J.O.G., and Jynge P. (1999). Cardiac metal contents after infusions of manganese: An experimental evaluation in the isolated rat heart. Invest. Radiol. 34:470–476.PubMedCrossRefGoogle Scholar
  19. 19.
    Brurok, H., Schjott, J., Berg, K., and Karlsson, J.O.G. (1997). Mangenese and heart: acute cardiodepression and myocardial accumulation of manganese. Acta Physiol. Scand. 159:33–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Brurok, H., Schjott, J., Berg, K., Karlsson, J.O.G., and Jyunge, P. (1997). Effects of MnDPDP, DPDP-, and MnCl2 on cardiac energy metabolism and manganese accumulation. An experimental study in the isolated perfused rat heart. Invest. Radiol. 32:205–211.PubMedCrossRefGoogle Scholar
  21. 21.
    Li, X.G., and Zhou, X.B. (1987). Effect of manganese on the electric activity in ventricle muscle and sinus cell. J. Chinese Endemic Dis. 6:67–70.Google Scholar
  22. 22.
    Jynge, P., Brurok, H., Schjott, J., Berg. K., and Karlsson, J.O.G. (1993). Physiologic effects of MnDPDP and MnCl2 in the isolated rat heart. Proceedings of the 12th meeting of the SMRM; New York, NY.Google Scholar
  23. 23.
    Brurok, H., Schiott, J., Berg, K., Karlsson, J.O.G., and Jynge, P. (1995) Effects of manganese dipyridoxyl diphosphate, dipyridoxyl diphosphate—, and manganese chloride on cardiac function. Invest. Radiol. 30:159–167.PubMedCrossRefGoogle Scholar
  24. 24.
    Jynge, P., Asplund, A., Schjott, J. Towart, R., Karlsson, J.O.G., and Refsum, H. (1994). Cardiovascular effects of MnDPDP compared to MnCl2. Proceedings of the 2nd Meeting of the SMR, San Francisco, CA.Google Scholar
  25. 25.
    Wolf, G.L., and Baum, L. (1983). Cardiovascular toxicity and tissue proton T1 response to manganese injection in the dog and rabbit. Am. J. Radiol. 141:193–197.Google Scholar
  26. 26.
    Muggenburg, B.A., Benson, J.M., Barr, E.B., Kubatko, J., and Tilley, L.P. (2003). Short-term inhalation of particulate transition metals has little effect on the electrocardiograms of dogs having preexisting cardiac abnormalities. Inhal. Toxicol. 15:357–371.PubMedCrossRefGoogle Scholar
  27. 27.
    Dudek, H., and Pytkowski, B. (1991). Effects of in vivo manganese administration on calcium exchange and contractile force of rat ventricular myocardium. Basic Res. Cardiol. 86:515–522.PubMedCrossRefGoogle Scholar
  28. 28.
    Tanaka, H., Ishii, T., Fujisaki, R., Miyamoto, Y., Tanaka, Y., Aikawa, T., et al. (2002). Effect of manganese on guineapig ventricle: initial depression and late augmentation of contractile force. Biol. Pharm. Bull. 25:323–326.PubMedCrossRefGoogle Scholar
  29. 29.
    Vander Elst, L., Colet, J.M., and Muller, R.N. (1997). Spectroscopic and metabolic effects of MnCl2 and MnDPDP on the isolated and perfused rat heart. Invest. Radiol. 32: 581–588.CrossRefGoogle Scholar
  30. 30.
    Khan, K.N., Andress, J.M., and Smith, P.F. (1997). Toxicity of subacute intravenous manganese chloride administration in beagle dogs. Toxicol. Pathol. 25:344–350.PubMedCrossRefGoogle Scholar
  31. 31.
    Yan, M., Liu, D.L., Chua, Y.L., Chen, C., and Lim, Y.L. (2001). Effects of micromolar concentration of manganese, copper, and zinc on α1-adrenoceptor-mediating contraction in rat aorta. Biol. Trace Elem. Res. 82:159–166.PubMedCrossRefGoogle Scholar
  32. 32.
    Kalea, A.Z., Harris, P.D., and Klimis-Zacas, D.J. (2005). Dietary manganese suppresses alphal adrenergic receptor-mediated vascular contraction. J. Nutr. Biochem. 16: 44–49.PubMedCrossRefGoogle Scholar
  33. 33.
    Brock, A.A., Chapman, S.A., Ulman, E.A., and Wu, G., (1994). Dietary manganese deficiency decrease rat hepatic arginase activity. J. Nutr. 124:340–344.PubMedGoogle Scholar
  34. 34.
    Ensunsa, J.L., Symons, J.D., Lanoue, L., Schrader, H.R., and Keen, C.L. (2004). Reducing arginase activity via die-tary manganese deficiency enhances endothelium-dependent vasorelaxation of rat aorta. Exp. Biol. Med. 229:1143–1153.Google Scholar
  35. 35.
    Karlsson, J.O.G., Mortensen, E., Pedersen, H.K., Sager, G., and Refsum, H. (1997). Cardiovascular effects of MnDPDP and MnC12 in dogs with acute ischaemic heart failure. Acta Radiol. 38:750–758.PubMedCrossRefGoogle Scholar
  36. 36.
    Jynge, P., Brurok, H., Asplund, A., Towart, R., Refssum, H., and Karlsson, J.O.G. (1997). Cardiovascular safety of MnDPDP and MnCl2. Acta Radiol. 38:740–749.PubMedGoogle Scholar
  37. 37.
    Jiang, Y.M., Lu, J.P., Tang, Y., Lu, Z.G., and Huang, J.L. (2000). Effects of low level manganese exposure on workers’ cardiovascular functions. Ind. Health Occup. Dis. 26: 28–30.Google Scholar
  38. 38.
    Jiang, Y.M., Lu, J.P., Lu, Z.G., and Huang, J.L. (1999). Effects of manganese exposure on female workers’ cardiovascular function. Railway Occup. Safety Health Environ. Prot. 26:31–33.Google Scholar
  39. 39.
    Xie, P.Y., Jiang, Y.M., Li, W.P., Yang, D.P., Yin, X.X., and Chen, L.H. (1999). Studies on changes of electrocardiogram and blood pressure in exposed workers. China Occup. Med. 26:21–23.Google Scholar
  40. 40.
    Zhang S.Q., Meng, X.M., and Xing, Z.F. (2003). The effect of long-term exposure to manganese smoke and dust on cardiovascular system in workers. J. Practical. Electrocardiol. 12:204–205.Google Scholar
  41. 41.
    Ji Q, and Zhang B. (2004). Alteration of the electrocardio-gram in workers exposed to low level manganese. Jiangsu Prev. Med. 15:50–51.Google Scholar
  42. 43.
    Jiang, Y.M., Xie, P.Y., Lu, J.P., Luo, J.R., Kong, X.C., and Chen, J.X. (1999). Investigation on cardiovascular functions in milling workers exposed to manganese dust. Railway Occup. Safety Health Environ. Prot. 6:179–182.Google Scholar
  43. 44.
    Su, D.M., Li, J.Y., Liu, S.Z., and Guo, G.X. (1998). Investigation on health in manganese ferroalloy workers. Occup. Health Emerg. Rescue 16, 148–149.Google Scholar
  44. 45.
    Hobbesland, A., Kjuus, H., and Thelle, D.S. (1997). Mortality from cardiovascular disease and sudden death in ferroalloy plants. Scand J. Work Environ. Health 23: 334–341.PubMedGoogle Scholar
  45. 46.
    Sjogren, B. (1998). A possible connection between funace dust exposure, plasma fibrinogen levels and cardiovascular disease. Scand J. Work Environ. Health 24:236–237.PubMedGoogle Scholar
  46. 47.
    Misselwitz, B., Muhler, A., and Weinmann, H.J. (1995). A toxicologic risk for using manganese complexes? A literature survey of existing data through several medical specialites. Invest. Radiol. 30:611–620.PubMedCrossRefGoogle Scholar
  47. 48.
    Jiang, Y.M., Lu, J.P., Huang, Z.B., Lu, Z.G., Huang, J.L., and Huang H.H. (2002). Effects of manganese exposure on cardiovascular functions of male workers. Ind. Health Occup. Dis. 28:65–67.Google Scholar
  48. 49.
    Saric, M., and Hrustic, O. (1975). Exposure to airborne manganese and arterial blood pressure. Environ. Res. 10: 314–318.PubMedCrossRefGoogle Scholar
  49. 50.
    Barrington, W.W., Angle, C.R., Willcockson, N.K., Padula, M.A., and Korn, T. (1998). Autonomic function in manganese alloy workers. Environ. Res. 78:50–58.PubMedCrossRefGoogle Scholar
  50. 51.
    He, S.C., Niu, Q., Wang, S., Chen, Y.L., Li, H.Y., and Wang, J.Y. (2002). Alteration of cardiovascular autonomic nervous system in welding workers. Chin. J. Environ. Occup. Med. 19:371–373.Google Scholar
  51. 52.
    Magari, S.R., Schwartz, J., Williams, P.L., Hauser, R., Smith, T.J., and Christiani, D.C. (2002). The association of particulate air metal concentrations with heart rate variability. Environ. Health Perspect. 110:875–880.PubMedCrossRefGoogle Scholar
  52. 53.
    Lu, J.F. (1989). Applied value on cardiac STI in the examination of the workers exposed to lead, benzene and manganese. Guangxi Occup. Prev. 9:66.Google Scholar
  53. 54.
    Reaney, S.H., and Smith, D.R. (2005). Manganese oxidation state mediates toxicity in PC12 cells. Toxicol. Appl. Pharmacol. 205:271–281.PubMedCrossRefGoogle Scholar
  54. 55.
    Sun G.F. (2003). Manganese. In: Occupational Health and Occupational Medicine, 5th Ed. (Jin, T.Y. and Sun G.F., eds.) People Press, Beijing: pp. 175–176.Google Scholar
  55. 56.
    Franco Mdo, C., Dantas, A.P., Akamine, E.H., Kawamoto E.M., Fortes, Z.B., Scavone, C., et al. (2002). Enhanced oxidative stress as a potential mechanism underlying the programming of hypertension in utero. J. Cardiovasc. Pharmacol. 40:501–509.PubMedCrossRefGoogle Scholar
  56. 57.
    Xuan D.F., Chu, J.H., Li, G.J., Geng, R., and Li, J. (2004). Effects of manganese with different valence on SOD activity in brain, liver and heart of rats. Ind. Health Occup. Dis. 30, 83–86.Google Scholar
  57. 58.
    Ramos, K.S., Chacon, E., Daniel, and Acosta, J. (1996). Toxic responses of the heart and vascular systems. In: Casarett and Doull’s Toxicology: The Basic Science of Poisons 5th Ed. (Klaassen C.D. ed.) McGraw-Hill, New York: pp. 487–527.Google Scholar
  58. 59.
    Hamai, D., and Bony, S.C. (2004). Oxidative basis of manganese neurotoxicity. Ann. N.Y. Acad. Sci. 1012:129–141.PubMedCrossRefGoogle Scholar
  59. 60.
    Zheng, W., Ren, S., and Graziano, J.H. (1998). Manganese inhibits mitochondrial aconitase: A mechanism of manganese neurotoxicity. Brain Res. 799:334–342.PubMedCrossRefGoogle Scholar
  60. 61.
    Zhao, F., Li, G.J., Chu, J.H., Cai, S., Geng, R., Wu, P., et al. (2003). Effects of manganese on the myocardial mitrochondrial function in old rats. Chin. J. Environ. Occup. Med. 20:151–153, 158.Google Scholar
  61. 62.
    Verity, M.A. (1999). Manganese neurotoxicity: a mechanistic hypothesis. Neurotoxicology 20:489–497.PubMedGoogle Scholar
  62. 63.
    Malecki, E.A. (2001). Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Res. Bull. 55:225–228.PubMedCrossRefGoogle Scholar
  63. 64.
    Brown, S., and Taylor, N.L. (1999). Could Mitochondrial dysfunction play a role in manganese toxicity? Environ. Toxicol. Pharmacol. 7:49–57.CrossRefGoogle Scholar
  64. 65.
    Gavin, C.E., Gunter, K.K., and Gunter, T.E. (1999). Manganese and calcium transport in mitochondria: implications for manganese toxicity. Neurotoxicology 20:445–454.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Department of Occupational Health and ToxicologyGuangxi Medical UniversityGuangxiPRC
  2. 2.School of Health SciencesPurdue UniversityWest Lafayette

Personalised recommendations