Cardiovascular Toxicology

, Volume 4, Issue 3, pp 217–228 | Cite as

Direct, DNA pol-γ-independent effects of nucleoside reverse transcriptase inhibitors on mitochondrial bioenergetics



Nucleoside reverse transcriptase inhibitor (NRTI)-induced cardiomyopathy has been suggested to reflect mitochondrial targets of drug toxicity. The prevailing hypothesis is that, through structural mimicry, the NRTIs are mistaken as substrates for DNA polymerase and incorporated into replicating DNA, where they cause truncation of the elongating strand. Although there exist five forms of nuclear DNA polymerase, mitochondria possess solely DNA polymerase-γ (pol-γ), which is a preferred target for most NRTIs. Consequently, mitochondria are particularly susceptible to inhibition of DNA replication by the NRTIs, which is consistent with the phenotype of mitochondrial depletion and metabolic failure in affected patients. However, the DNA pol-γ hypothesis by itself fails to explain the entire array of metabolic deficiencies associated with NRTI-induced disorders. In this article, we review the published literature regarding the direct effects of NRTIs on various mitochondrial targets and suggest the possibility that the initiating event in NRTI-induced cardiomyopathy is a direct mitochondrial toxicity rather than inhibition of mitochondrial DNA pol-γ. The goal of this review is to encourage a discussion of the cause of NRTI-induced mitochondrial cardiomyopathy to include a fresh consideration of all possible targets and integrating pathways that are involved in establishing mitochondrial bioenergetic fidelity and metabolic capacity in the affected myocardium.

Key Words

NRTI mitochondria AIDS in vitro bioenergetics HAART DNA pol-γ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yarchoan, R., Klecker, R., Weinhold, K., Markham, P., Lyerly, H., Durack, D., et al. (1986). Administration of 3′azido-3′deoxythymidine, an inhibitor of HTLV-III/LAV replication, to patients with AIDS or AIDS-related complex. Lancet 1:575–580.PubMedCrossRefGoogle Scholar
  2. 2.
    Helbert, M., Fletcher, T., Peddle, B., Harris, J.R.W., and Pinching, A.J. (1988). Zidovudine-associated myopathy. Lancet 2:689–690.PubMedCrossRefGoogle Scholar
  3. 3.
    Bessen, L., Greene, J., Louie, E., Seitzman, P., and Weinberg, H. (1988). Severe polymyositis-like syndrome associated with zidovudine therapy of AIDS and ARC. N. Engl. J. Med. 318:708.PubMedGoogle Scholar
  4. 4.
    Brinkman, K., ter Hofstede, H.J., Burger, D., Smeitink, J., and Koopmans, P. (1998). Adverse effects of reverse transcriptase inhibitions: mitochondrial toxicity as common pathway. AIDS 12:1735–1744.PubMedCrossRefGoogle Scholar
  5. 5.
    Kakuda, T.N. (2000). Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin. Ther. 22:685–708.PubMedCrossRefGoogle Scholar
  6. 6.
    Lewis, W. and Dalakas, M.C. (1995), Mitochondrial toxicity of antiviral drugs. Nat. Med. 1:417–422.PubMedCrossRefGoogle Scholar
  7. 7.
    Lewis, W., Copeland, W.C., and Day, B.J. (2001). Mitochondrial DNA depletion, oxidative stress, and mutation: mechanisms of dysfunction from nucleoside reverse transcriptase inhibitors. Lab. Invest. 81:777–790.PubMedGoogle Scholar
  8. 8.
    Barazzoni, R., Short, K.R., and Nair, K.S. (2000). Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J. Biol. Chem. 275:3343–3347.PubMedCrossRefGoogle Scholar
  9. 9.
    Sogl, B., Gellissen, G., and Wiesner, R.J. (2000). Biogenesis of giant mitochondria during insect flight muscle development in the locust, Locusta migratoria: transcription, translation and copy number of mitochondrial DNA. Eur. J. Biochem. 267:11–17.PubMedCrossRefGoogle Scholar
  10. 10.
    Dalakas, M.C., Illa, I., Pezeshkpour, G.H., Laukaitis, J.P., Cohen, B., and Griffin, J.L. (1990) Mitochondrial myopathy caused by long-term zidovudine therapy. N. Engl. J. Med. 322:1098–1105.PubMedCrossRefGoogle Scholar
  11. 11.
    Tang, Y., Schon, E.A., Wilichowski, E., Vasquez-Memije, M.E., Davidson, E., and King, M.P. (2000). Rearrangements of human mitochondrial DNA (mtDNA): new insights into the regulation of mtDNA copy number and gene expression. Mol. Biol. Cell. 11:1471–1485.PubMedGoogle Scholar
  12. 12.
    Pereira, L.F., Oliveira, M.B.M., and Carnieri, E.G.S. (1998). Mitochondrial sensitivity to AZT. Cell Biochem. Funct. 16:173–181.PubMedCrossRefGoogle Scholar
  13. 13.
    Lamperth, L., Dalakas, M.C., Dagani, F., Anderson, J., and Ferrari, R. (1991). Abnormal skeletal and cardiac muscle mitochondria induced by zidovudine (AZT) in human muscle in vitro and in an animal model. Lab. Invest. 65:742–751.PubMedGoogle Scholar
  14. 14.
    Szabados, E., Fischer, G.M., Toth, K., Csete, B., Nemeti, B., Trombitas, K., et al. (1999). Role of reactive oxygen species and poly-ADP-ribose polymerase in the development of AZT-induced cardiomyopathy in rat. Free Radic. Biol. Med. 26:309–317.PubMedCrossRefGoogle Scholar
  15. 15.
    Cazzalini, O., Lazze, M.C., Lamele, L., Stivala, L.A., Bianchi, L., Vaghi, P., et al. (2001). Early effects of AZT on mitochondrial functions in the absence of mitochondrial DNA depletion in rat myotubes. Biochem. Pharmacol. 62:893–902.PubMedCrossRefGoogle Scholar
  16. 16.
    Modica-Napolitano, J.S. (1993). AZT causes tissue-specific inhibition of mitochondrial bioenergetic function. Biochem. Biophys. Res. Commun. 194:170–177.PubMedCrossRefGoogle Scholar
  17. 17.
    Benbrik, E., Chariot, P., Bonavaud, S., Ammi-Said, M., Frisdal, E., Rey, C., et al. (1997). Cellular and mitochondrial toxicity of zidovudine (AZT), didanosine (ddI), and zalcitabine (ddC) on cultured human muscle cells. J. Neurol. Sci. 149:19–25.PubMedCrossRefGoogle Scholar
  18. 18.
    Pan-Zhou, Z.-R., Cui, L., Zhou, X-J., Sommadossi, J.-P., and Darley-Usmar, V.M. (2000). Differential effects of antiretroviral nucleoside analogs on mitochondrial function in HepG2 cells. Antimicrob. Agents Chemother. 44: 496–503.PubMedCrossRefGoogle Scholar
  19. 19.
    Atlante, A. and Passarella, S. (1998). AZT side effect on mitochondria does not depend on either inhibition of electron flow or mitochondrial uncoupling. Int. J. Mol. Med. 1:601–603.PubMedGoogle Scholar
  20. 20.
    Gerschenson, M., Erhart, S.W., Paik, C.Y., Claire, M.C.S., Nagashima, K., Skopets, B., et al. (2000). Fetal mitochondrial heart and skeletal muscle damage in Erythrocebus patas monkeys exposed in utero to 3′-azido'-3′-deoxythymidine. AIDS Res. Hum. Retroviruses 16:635–644.PubMedCrossRefGoogle Scholar
  21. 21.
    Hobbs, G.A., Keilbaugh, S.A., Reif, P.M., and Simpson, M.V. (1995). Cellular targets of 3′-azido-3′-deoxythymidine: an early (non-delayed) effect on oxidative phosphorylation. Biochem. Pharmacol. 50:381–390.PubMedCrossRefGoogle Scholar
  22. 22.
    Keilbaugh, S.A., Hobbs, G.A., and Simpson, M.V. (1997). Effect of 2′,3′-deoxycytidine on oxidative phosphorylation in the PC12 cell, a neuronal model. Biochem. Pharmacol. 53:1485–1492.PubMedCrossRefGoogle Scholar
  23. 23.
    Valenti, D., Atlante, A., Barile, M., and Passarella, S. (2002). Inhibition of phosphate transport in rat heart mitochondria by 3′-azido-3′-deoxythymidine due to stimulation of superoxide anion mitochondrial production. Biochem. Pharmacol. 64:201–206.PubMedCrossRefGoogle Scholar
  24. 24.
    Genova, M.L., Ventura, B., Giuliano, G., Bovina, C., Formiggini, G., Castelli, G.P., et al. (2001). The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinoe but presumably ironsulfur cluster N2. FEBS Lett. 505:364–368.PubMedCrossRefGoogle Scholar
  25. 25.
    Sutliff, R.L., Dikalov, S., Weiss, D., Parker, J., Raidel, S., Racine, A.K., et al. (2002). Nucleoside reverse transcriptase inhibitors impair endothelium-dependent relaxation by increasing superoxide. Am. J. Physiol. Heart Circ. Physiol. 283:H2363-H2370.PubMedGoogle Scholar
  26. 26.
    Collier, A.C., Helliwell, R.J.A., Keelan, J.A., Paxton, J.W., Mitchell, M.D., and Tingle, M.D. (2003). 3′-A zido-3′-deoxythymidine (AZT) induces apoptosis and alters metabolic activity in human placenta. Toxicol. Appl. Pharmacol. 192:164–173.PubMedCrossRefGoogle Scholar
  27. 27.
    Elimadi, A., Morin, D., Albengres, E., Chauyet-Monges, A.-M., Allain, V., Crevat, A., et al. (1997). Differential effects of zidovudine and zidovudine triphosphate on mitochondrial permeability transition and oxidative phosphorylation. Br. J. Pharmacol. 121:1295–1300.PubMedCrossRefGoogle Scholar
  28. 28.
    Sales, S.D., Hoggard, P.G., Sunderland, D., Khoo, S., Hart, C.A., and Back, D.J. (2001). Zidovudine phosphorylation and mitochondrial toxicity in vitro. Toxicol. Appl. Pharmacol. 177:54–58.PubMedCrossRefGoogle Scholar
  29. 29.
    Wada, S., Tsuda, M., Sekine, T., Cha, S.H., Kimura, M., Kanai, Y., et al. (2000). Rat multispecific organic anion transporter 1 (rOAT1) transports zidovudine, acyclovir, and other antiviral nucleoside analogs. J. Pharmacol. Exp. Ther. 294:844–849.PubMedGoogle Scholar
  30. 30.
    Masini, A., Scotti, C., Caligaro, A., Cazzalini, O., Stivala, L.A., Bianchi, L., et al. (1999). Zidovudine-induced experimental myopathy: dual mechanism of mitochondrial damage. J. Neurol. Sci. 166:131–140.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen, Q., Vazquez, E.J., Moghaddas, S., Hoppel, C.L., and Lesnefsky, E.J. (2003). Production of reactive oxygen species by mitochondria: central role of complex III. J. Biol. Chem. 278:36027–36031.PubMedCrossRefGoogle Scholar
  32. 32.
    Herzberg, N.H., Zorn, I., Zwart, R., Portegies, P., and Bolhuis, P.A. (1992). Major growth reduction and minor decrese in mitochondrial enzyme activity in cultured human muscle cells after exposure to zidovudine. Muscle Nerve 15:706–710.PubMedCrossRefGoogle Scholar
  33. 33.
    Freyssenet, D., DiCarlo, M., Escobar, P., Grey, J., Schneider, J., and Hood, D.A. (1999). Zidovudine (AZT) induced alterations in mitochondrial biogenesis in rat striated muscles. Can. J. Physiol. Pharmacol. 77:29–35.PubMedCrossRefGoogle Scholar
  34. 34.
    McCurdy, D.T. and Kennedy, J.M. (1996). Skeletal muscle mitochondria from AZT-treated rats have a diminished response to chronic electrical stimulation. J. Appl. Physiol. 81:326–334.PubMedGoogle Scholar
  35. 35.
    McCurdy, D.T. and Kennedy, J.M. (1998). AZT decreases rat myocardial cytochrome oxidase activity and increases b-myosin heavy chain content. J. Mol. Cell. Cardiol. 30: 1979–1989.PubMedCrossRefGoogle Scholar
  36. 36.
    Sommadossi, J.P., Carlisle, R., and Zhou, Z. (1989). Cellular pharmacology of 3′-azido-3′-deoxythymidine with evidence of incorporation into DNA of human bone marrow cells. Mol. Pharmacol. 36:9–14.PubMedGoogle Scholar
  37. 37.
    Weidner, D.A. and Sommadossi, J.P. (1990). 3′-Azido-3′-deoxythymidine inhibits globin gene transcription in butyric acid-induced K-562 human leukemia cells. Mol. Pharmacol. 38:797–804.PubMedGoogle Scholar
  38. 38.
    Agarwal, R.P. and Olivero, O.A. (1997). Genotoxicity and mitochondrial damage in human lymphocytic cells chronically exposed to 3′-azido-2′,3′-deoxythymidine. Mutat. Res. 390:223–231.PubMedGoogle Scholar
  39. 39.
    Martin, J.L., Brown, C.E., Matthews-Davis, N., and Reardon, J.E. (1994). Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. Antimicrob. Agents Chemother. 38:2743–2749.PubMedGoogle Scholar
  40. 40.
    Cheng, Y.C., Gao, W.Y., Chen, C.H., Vazquez-Padua, M., and Starnes, M.C. (1990). DNA polymerases versus HIV reverse transcriptase in AIDS therapy. Ann. NY Acad. Sci. 616:217–223.PubMedCrossRefGoogle Scholar
  41. 41.
    Yamaguchi, T., Katoh, I., and Kurata, S.-I. (2002). Azidothymidine causes functional and structural destruction of mitochondria, glutathione deficiency and HIV-1 promoter sensitization. Eur. J. Biochem. 269:2782–2788.PubMedCrossRefGoogle Scholar
  42. 42.
    Barile, M., Valenti, D., Passarella, S., and Quagliariello, E. (1997). 3′-Azido-3′-deoxythymidine uptake into isolated rat liver mitochondria and impairment of ADP/ATP translocator. Biochem. Pharmacol. 53:913–920.PubMedCrossRefGoogle Scholar
  43. 43.
    Barile, M., Valenti, D., Hobbs, G.A., Abruzzese, M.F., Keilbaugh, S.A., Quadgliariello, E., et al. (1994). Mechanisms of toxicity of 3′-azido-3′-deoxythymidine: its interaction with adenylate kinase. Biochem. Pharmacol. 48:1405–1412.PubMedCrossRefGoogle Scholar
  44. 44.
    Valenti, D., Barile, M., Quagliariello, E., and Passarella, S. (1999). Inhibition of nucleoside diphosphate kinase in rat liver mitochondria by added 3′-azido-3′-deoxythymidine. FEBS Lett. 444:291–295.PubMedCrossRefGoogle Scholar
  45. 45.
    Bourdais, J., Biondi, R., Sarfati, S., Guerreiro, C., Lascu, I., Janin, J. et al. (1996). Cellular phosphorylation of anti-HIV nucleosides. J. Biol. Chem. 271:7887–7890.PubMedCrossRefGoogle Scholar
  46. 46.
    Moraes, C.T. (2001). What regulates mitochondrial DNA copy number in animal cells?. Trends Genet. 17:199–205.PubMedCrossRefGoogle Scholar
  47. 47.
    D’Amati, G., and Lewis, W. (1994). Zidovudine causes early increses in mitochondrial ribonucleic acid abundance and induces ultrastructural changes in cultured mouse muscle cells. Lab. Invest. 71:879–884.PubMedGoogle Scholar
  48. 48.
    Gerschenson, M., Nguyen, V.T., Claire, M.C.S., Harbaugh, S.W., Harbaugh, J.W., Proia, L.A., et al. (2001). Chronic stavudine exposure induces hepatic mitochondrial toxicity in adult Erythocebus patas monkeys. J. Hum. Virol. 4: 335–342.PubMedGoogle Scholar
  49. 49.
    Georges, B., Galland, S., Rigault, C., Borgne, F.L., and Demarquoy, J. (2003). Beneficial effects of 1-carnitine in myoblastic C2C12 cells: interaction with zidovudine. Biochem. Pharmacol. 65:1483–1488.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, Toxicology Graduate ProgramUniversity of Minnesota School of MedicineDuluth

Personalised recommendations