Cardiovascular Toxicology

, Volume 4, Issue 2, pp 155–167 | Cite as

Phosphorylation of thymidine and AZT in heart mitochondria

Elucidation of a novel mechanism of AZT cardiotoxicity
  • Edward E. McKee
  • Alice T. Bentley
  • Matthew Hatch
  • Joel Gingerich
  • Delia Susan-Resiga
Original Contributions

Abstract

Antiretroviral nucleoside analogs used in highly active antiretroviral therapy (HAART) are associated with cardiovascular and other tissue toxicity associated with mitochondrial DNA depletion, suggesting a block in mitochondrial (mt)-DNA replication. Because the triphosphate forms of these analogs variably inhibit mt-DNA polymerase this enzyme has been promoted as the major target of toxicity associated with HAART. We have used isolated mitochondria from rat heart to study the mitochondrial transport and phosphorylation of thymidine and AZT (azidothymidine, or zidovudine), a component used in HAART. We demonstrate that isolated mitochondria readity transport thymidine and phosphorylate it to thymidine 5′-triphosphate (TTP) within the matrix. Under identical conditions, AZT is phosphorylated only to AZT-5′-monophosphate (AZT-MP). The kinetics of thymidine and AZT agest negative cooperatively of substrate interaction with the enzyme, consistent with work by others on mitochondrial thymidine kinase 2. Results show that TMP and AZT-MP are not transported across the inner membrane, suggesting that AZT-MP may accumulate with time in the matrix. Given the lack of AZT-5′-triphosphate (AZT-TP), it seems unlikely that the toxicity of AZT in the heart is mediated by AZT-TP inhibition of DNA polymerase γ. Rather, our work shows that AZT is a potent inhibitor of thymidine phosphorylation in heart mitochondria, having an inhibitory concentration (IC)50 of 7.0±0.9 μM. Thus, the toxicity of AZT in some tissues may be mediated by disrupting the substrate supply of TTP for mt-DNA replication.

Key Words

Heart mitochondria AZT cardiotoxicity thymidine kinase TMP kinase mitochondrial DNA depletion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lewis, W. and Dalakas, M.C. (1995). Mitochondrial toxicity of antiviral drugs. Nat. Med. 1:417–421.PubMedCrossRefGoogle Scholar
  2. 2.
    Benbrik E., Chariot, P. Bonavaud, S., Ammi-Satd, M., Frisdal, E., Rey, C., et al. (1997). Cellular and mitochondrial toxicity of zidovudine (AZT), didanosine (ddI) and zalcitabine (ddC) on cultured human muscle cells. Neurol. Sci. 149:19–25.CrossRefGoogle Scholar
  3. 3.
    Barile, M., Valenti, D., Quagliariello, E., and Passarella, S. (1998). Mitochondrial as cell targets of AZT (Zidovudine). Gen. Pharmacol. 31:531–538.PubMedCrossRefGoogle Scholar
  4. 4.
    Arnaudo, E., Dalakas, M., Shanske, S. Moraes, C.T., Dimauro, S., and Schon, E.A. (1991). Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet 337:508–510.PubMedCrossRefGoogle Scholar
  5. 5.
    Simpson, M.V., Chin, C.D., Keilbaugh, S.A., Lin, T.S., and Prusof, W.H. (1989). Studies on the inhibition of mitochondrial DNA replication by 3′-azido-3′-deoxythymidine and other dideoxynucleoside analogs which inhibit HIV-1 replication. Biochem. Pharmacol 38:1033–1036.PubMedCrossRefGoogle Scholar
  6. 6.
    Lewis, W., Gonzalez, B., Chomyn, A., and Papoian, T.J. (1992). Zidovudine induces molecular, biochemical, and ultrastructural changes in rat skeletal muscle mitochondria. Clin. Invest. 89:1354–1360.Google Scholar
  7. 7.
    Lewis W., Simpson, J.F., and Meyer, R.R. (1994). Cardiac mitochondrial DNA, polymerase-γ is inhibited competitively and noncompetitively by phosphorylated zidovudine. Circ. Res. 74:344–348.PubMedGoogle Scholar
  8. 8.
    Lim, S.E. and Copeland, W.C. (2001). Differential incorporation removal of antiviral deoxynucleosides by human DNA polymerase γ. J. Biol. Chem. 276:23616–23623.PubMedCrossRefGoogle Scholar
  9. 9.
    Martin J.L., Brown C.E., Matthews-Davis N., and Reardon J.E. (1994). Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. Antimicrob. Agents Chemother. 38:2743–2749.PubMedGoogle Scholar
  10. 10.
    Johnson, A.A., Ray, A.S., Hanes, J., Suo, Z., Colacino, J.M., Anderson, K.S., et al. (2001). Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase. J. Biol. Chem. 276:40847–40857.PubMedCrossRefGoogle Scholar
  11. 11.
    Sales, S.D., Hoggard, P.G., Sunderland, D., Khoo, S., Hart, C.A., and Back, D.J. (2001). Zidovudine phosphorylation and mitochondrial toxicity in vitro. Toxicol., Appl. Pharmacol. 177:54–58.CrossRefGoogle Scholar
  12. 12.
    Lavie, A., Schlichting, I., Vetter, I.R., Konrad, M., Reinstein, J., and Goody, R.S. (1997). The bottleneck in AZT activation. Nat. Med 3:922–924.PubMedCrossRefGoogle Scholar
  13. 13.
    Lavie, A., Vetter, I.R., Konrad M., Woody R.S., Reinstein, J., and Schilichting, L. (1997). Structure of thymidylate kinase reveals the cause behind the limiting step in AZT activation. Nat. Struct. Biol. 4:601–604.PubMedCrossRefGoogle Scholar
  14. 14.
    Frick, L.W., Nelson, D.J., St Clair, M.H., Furman, P.A., and Krenitsky, T.A. (1988). Effects of 3′azido-3′-deoxythymidine on the deoxynucleotide triphosphate pools of cultured human cells. Biochem. Biophys. Res. Commun. 154:124–129.PubMedCrossRefGoogle Scholar
  15. 15.
    Hobbs, G.A., Keilbaugh, S.A., Rief, P.M., and Simpson, M.V. (1995). Cellular targets of 3′azido-3′-deoxythymidine: an early (non-delayed) effect on oxidative phosphorylation. (1995). Biochem. Pharmacol. 50:381–390.PubMedCrossRefGoogle Scholar
  16. 16.
    Johansson, M., Van Rompay, A.R., Degreve, B., Balzarini, J., and Karlsson, A. (1999). Cloning and characterization of the multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster. J. Biol. Chem. 274:23814–23819.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang, L., Karlsson, A., Arner, E.S.J., and Eriksson, S. (1993). Substrate specificity of mitochondrial 2′deoxyguanosine kinase. J. Biol. Chem. 268:22847–22852.PubMedGoogle Scholar
  18. 18.
    Wang, L., Munch-Petersen, B., Herrstrom Sjoberg, A., Hellman, U., Bergman, T., Jornvall, H., et al. (1999). Human thymidine kinase 2: molecular cloning and characterization of the enzyme activity with antiviral and cytostatic nucleosid substrates. FEBS Lett. 443:170–174.PubMedCrossRefGoogle Scholar
  19. 19.
    Mazzon, C. Rampazzo, C., Chaira Scaini, M., Gallinaro, L., Karlsson, A., Meir, C., et al. (2003). Cytosolic and mitochondrial deoxyribonucleotidases: activity with substrate analogs, inhibits and implications for therapy. Biochem. Pharmacol. 66:471–479.PubMedCrossRefGoogle Scholar
  20. 20.
    Van Rompay, A.R., Johansson, M., and Karlsson, A. (2000). Phosphorylation of nucleosides and nucleoside analogs by mammalian nucleoside monophosphate kinases. Pharmacol. Ther. 87:189–198.PubMedCrossRefGoogle Scholar
  21. 21.
    Kowluru, A., Tannous, M., and Chen, H.Q. (2002). Localization and characterization of the mitochondrial isoform of the nucleotide diphosphate kinase in the pancreatic β cell: evidence for its complexation with mitochondrial succinyl-CoA synthetase. Arch. Biochem. Biophys. 398: 160–169.PubMedCrossRefGoogle Scholar
  22. 22.
    Dolce, V., Fiermonte, G., Runwick, M.J., Palmieri, F., and Walker, J.E. (2000). The human mitochondrial deoxynucleotide carrier and tis role in the toxicity of nucleoside antivirals. Proc. Natl. Acad. Sci. USA 98:2284–2288.CrossRefGoogle Scholar
  23. 23.
    Munch-Petersen, B., Cloos, L., Tyrsted, G., and Eriksson, S. (1991). Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. J. Biol. Chem. 266:9032–9038.PubMedGoogle Scholar
  24. 24.
    Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S., and Elpeleg, O. (2001). Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat. Genet. 29:342–344.PubMedCrossRefGoogle Scholar
  25. 25.
    McKee, E.E., Grier, B.L., Thompson, G.S., and McCourt, J.D. (1990). Isolation and incubation conditions to study heart mitochondrial protein synthesis. Am. J. Physiol. 258: E492-E502.PubMedGoogle Scholar
  26. 26.
    McKee, E.E., Bentley, A.T., Smith, R.M., and Ciaccio, C.E. (1990). Origin of guanine nucleotides in isolated heart mitochondria. Biochem. Biophys. Res. Commun. 257:466–472.CrossRefGoogle Scholar
  27. 27.
    McKee, E.E., Bentley, A.T., Smith, R.M., Kraas, J.R., and Ciaccio, C.E. (2000). Guanine nucleotide transport by atractyloside-sensitive and-insensitive carriers in isolated heart mitochondrial. Am. J. Physiol. 279:C1870-C1879.Google Scholar
  28. 28.
    Wang, I. and Eriksson, S. (2000). Cloning and characterization of full-length mouse thymidine kinase 2: the N-terminal sequence directs import of the precursor protein into mitochondria. Biochem. J. 351:469–476.PubMedCrossRefGoogle Scholar
  29. 29.
    Saada, A., Ben-Shalom, E. Zyslin, R., Mandel, H., and Elpeleg, O. (2003). Mitochondrial deoxyribonucleoside triphosphate pools in thymidine kinase 2 deficiency. Biochem. Biophys. Res. Commun. 310:963–966.PubMedCrossRefGoogle Scholar
  30. 30.
    Mandel, H., Szarel, R., Labay, V., Elpeleg, O., Saada, A., Anbinder Y., et al. (2001). The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat. Genet. 29:337–341.PubMedCrossRefGoogle Scholar
  31. 31.
    Nishino, I., Spinazolla, A., and Hirano, M. (1999). Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283:689–692.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Edward E. McKee
    • 1
  • Alice T. Bentley
    • 1
  • Matthew Hatch
    • 1
  • Joel Gingerich
    • 1
  • Delia Susan-Resiga
    • 1
  1. 1.South Bend Center for medical EducationIndiana University School of MedicineNotre Dame

Personalised recommendations