Cardiovascular Toxicology

, Volume 3, Issue 3, pp 219–228

Cell death and diabetic cardiomyopathy

Article

Abstract

Myocardial cell death is a key element in the pathogenesis and progression of various etiological cardiomyopathies such as ischemia-reperfusion, toxic exposure, and various chronic diseases including myocardial infarction, atherosclerosis, and endothelial dysfunction. Myocardial cell death is also observed in the hearts of diabetic patients and antimal models; however, its importance in the development of diabetic cardiomyopathy is not completely understood. The goal of this review is to summarize our current understanding of the characteristics of diabetes-induced myocardial cell death. In the search of themechanisms by which diabetes induces myocardial cell death, multiple cell death pathways have been proposed. Reactive oxygen and nitrogen species accumulation plays a critical role in the cell death by antioxidants or inhibitors for apoptosis-specific signaling pathways results in a significant prevention of diabetic cardiotoxicity, suggesting that cell death in diabetic subjects plays an important role in the development of diabetic cardiomyopathy.

Key words

Apoptosis hyperglycemia hyperlipidemia inflammation cytokines oxidative stress antioxidants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Swynghedauw, B. (1999). Molecular mechanisms of myocardial remodeling. Physiol. Rev. 79:215–262.PubMedGoogle Scholar
  2. 2.
    Kang, Y.J. (2001). Molecular and cellular mechanisms of cardiotoxicity. Environ. Health Perspect. 109(Suppl 1):27–34.PubMedCrossRefGoogle Scholar
  3. 3.
    Teiger, E., Than, V.D., Richard, L., Wisnewsky, C., Tea, B.S., Gaboury, L., Tremblay, J., Schwartz, K. and Hamet, P. (1996). Apoptosis in pressure overload-induced heart hypertrophy in the rat. J. Clin. Invest. 97:2891–2897.PubMedGoogle Scholar
  4. 4.
    Narula, J., Kolodgie, F.D. and Virmani, R. (2000). Apoptosis and cardiomyopathy. Curr. Opin. Cardiol. 15:183–188.PubMedCrossRefGoogle Scholar
  5. 5.
    Nerheim, P., Krishnan, S.C., Olshansky, B. and Shivkumar, K. (2001). Apoptosis in the genesis of cardiac rhythm disorders. Cardiol. Clin. 19:155–163.PubMedCrossRefGoogle Scholar
  6. 6.
    Tomei, L.D. and Umansky, S.R. (2001). Apoptosis and the heart: A brief review. Ann. NY Acad. Sci. 946:160–168.PubMedGoogle Scholar
  7. 7.
    Richardson, P., McKenna, W., Bristow, M., Maisch, B., Mautner, B., O’Connell, J., et al. (1996). Report of the 1995 World health organization/International Society and Federation of Cardiology Task force on the definition and classification of cardiomyopathies. Circulation 93:841–842.PubMedGoogle Scholar
  8. 8.
    Davies, M.J. (2000). The cardiomyopathies: An overview. Heart 83:469–474.PubMedCrossRefGoogle Scholar
  9. 9.
    Francis, G.S. (2001). Editorial. Diabetic cardiomyopathy: Fact or friction? Heart 85:247–248.PubMedCrossRefGoogle Scholar
  10. 10.
    Sowers, J.R., Epstein, M., and Frohlich, E.D. (2001). Diabetes, hypertension, and cardiovascular disease: An update. Hypertension 37:1053–1059.PubMedGoogle Scholar
  11. 11.
    Timmis, A.D. (2001). Diabetic heart disease: Clinical considerations. Heart 85:463–469.PubMedCrossRefGoogle Scholar
  12. 12.
    Alici, B., Gumustas, M.K., Ozkara, H., Akkus, E., Demirel, G., Yencilek, F., and Hattat, H. (2000). Apoptosis in the erectile tissues of diabetic and healthy rats. Br. J. Urol. Int. 85:326–329.Google Scholar
  13. 13.
    Moley, K.H. (2001). Hyperglycemia and apoptosis: Mechanisms for congenital malformations and pregnancy loss in diabetic woman. Trends Endocr. Metab. 12:78–82.CrossRefGoogle Scholar
  14. 14.
    Srinivasan, S., Stevens, M., and Wiley, J.W. (2000). Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes 49:1932–1938.PubMedCrossRefGoogle Scholar
  15. 15.
    Barber, A.J., Lieth, E., Khin, S.A., Antonetti, D.A., Buchanan, A.G., and Gardner, T.W. (1998). Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J. Clin. Invest. 102:783–791.PubMedGoogle Scholar
  16. 16.
    Kang, B.P., Frencher, S., Reddy, V., Kessler, A., Malhotra, A., and Meggs, L.G. (2003). High glucose promotes mesangial cell apoptosis by an oxidant dependent mechanism. Am. J. Physiol. Renal Physiol. 284:F455-F466.PubMedGoogle Scholar
  17. 17.
    Li, Z.G., Zhang, W., Grunberger, G., and Sima, A.A. (2002). Hippocampal neuronal apoptosis in type-1 diabetes. Brain Res. 946:221–231.PubMedCrossRefGoogle Scholar
  18. 18.
    Russell, J.W., Golovoy, D., Vincent, A.M., Mahendru, P., Olzmann, J.A., Mentzer, A., and Feldman, E.L. (2002). High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J. 16:1738–1748.PubMedCrossRefGoogle Scholar
  19. 19.
    Sainio-Pollanen, S., Henriksen, K., Parvinen, M., Simell, O., and Pollanen, P. (1997). Stage-specific degeneration of germ cells in the seminiferous tubules of non-obese diabetic mice. Int. J. Androl. 20:243–253.PubMedCrossRefGoogle Scholar
  20. 20.
    Cai, L., Chen, S., Evans, T., Deng, D.X., Mukherjee, K., and Chakrabarti, S. (2000). Apoptotic germ-cell death and testicular damage in experimental diabetes: Prevention by endothelin antagonism. Urol. Res. 28:342–347.PubMedCrossRefGoogle Scholar
  21. 21.
    Feuerstein, G.Z., and Young, P.R. (2000). Apoptosis in cardiac diseases: Stress- and mitogen-activated signaling pathways. Cardiovasc. Res. 45:560–569.PubMedCrossRefGoogle Scholar
  22. 22.
    Cai, L., and Kang, Y.J. (2001). Oxidative stress and diabetic cardiomyopathy: A brief review. Cardiovasc. Toxicol. 1:181–193.PubMedCrossRefGoogle Scholar
  23. 23.
    Fiordaliso, F., Li, B., Latini, R., Sonnenblick, E.H., Anversa, P., Leri, A., and Kajstura, J. (2000). Myocyte death in streptozotocin-induced diabetes in rats in angiotensin II-dependent. Lab. Invest. 80:513–527.PubMedGoogle Scholar
  24. 24.
    Chen, S., Evans, T., Mukherjee, K., Karmazyn, M., and Chakrabarti, S. (2000). Diabetes-induced myocardial structural changes: role of endothelin-1 and its receptors. J. Mol. Cell. Cardiol. 32:1621–1629.PubMedCrossRefGoogle Scholar
  25. 25.
    Cai, L., Li, W., Wang, G., Guo, L., Jiang, Y., and Kang, Y.J. (2002). Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51:1938–1948.PubMedCrossRefGoogle Scholar
  26. 26.
    Kajstura, J., Fiordaliso, F., Andreoli, A.M., Li, B., Chimenti, S., Medow, M.S., et al. (2001). IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 50: 1414–1424.PubMedCrossRefGoogle Scholar
  27. 27.
    Frustaci, A., Kajstura, J., Chimenti, C., Jakoniuk, I., Leri, A., Maseri, A., Nadal-Ginard, B. and Anversa, P. (2000). Myocardial cell death in human diabetes. Circ. Res. 87:1123–1132.PubMedGoogle Scholar
  28. 28.
    Baumgartner-Parzer, S.M., Wagner, L., Pettermann, M., Grillari, J., Gessl, A., and Waldhausl, W. (1995). High-glucose—triggered apoptosis in cultured endothelial cells. Diabetes 44:1323–1327.PubMedCrossRefGoogle Scholar
  29. 29.
    Wu, Q.D., Wang, J.H., Fennessy, F., Redmond, H.P., and Bouchier-Hayes, D. (1999). Taurine prevents high-glucose-induced human vascular endothelial cell apoptosis. Am. J. Physiol. 277:C1229-C1238.PubMedGoogle Scholar
  30. 30.
    Chi, M.M., Pingsterhaus, J., Carayannopoulos, M., and Moley, K.H. (2000). Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst. J. Biol. Chem. 275:40252–40257.PubMedCrossRefGoogle Scholar
  31. 31.
    Ho, F.M., Liu, S.H., Liau, C.S., Huang, P.J., and Lin-Shiau, S.Y. (2000). High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3. Circulation 101:2618–2624.PubMedGoogle Scholar
  32. 32.
    Peiro, C., Lafuente, N., Matesanz, N., Cercas, E., Llergo, J.L., Vallejo, S., et al. (2001). High glucose induces cell death of cultured human aortic smooth muscle cells through the formation of hydrogen peroxide. Br. J. Pharmacol. 133:967–974.PubMedCrossRefGoogle Scholar
  33. 33.
    Zou, M.H., Shi, C., and Cohen, R.A. (2002). High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H(2) receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. Diabetes 51:198–203.PubMedCrossRefGoogle Scholar
  34. 34.
    Fiordaliso, F., Leri, A., Cesselli, D., Limana, F., Safai, B., Nadal-Ginard, B., et al. (2001). Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes 50:2363–2375.PubMedCrossRefGoogle Scholar
  35. 35.
    Shizukuda, Y., Reyland, M.E., and Buttrick, P.M. (2002). Protein kinase C-delta modulates apoptosis induced by hyperglycemia in adult ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 282:H1625-H1634.PubMedGoogle Scholar
  36. 36.
    Zhou, Y.T., Grayburn, P., Karim, A., Shimabukuro, M., Higa, M., Baetens, D., Orci, L., and Unger, R.H. (2000). Lipotoxic heart disease in obese rats: Implications for human obesity. Proc. Natl. Acad. Sci. USA 97:1784–1789.PubMedCrossRefGoogle Scholar
  37. 37.
    Chiu, H.C., Kovacs, A., Ford, D.A., Hsu, F.F., Garcia, R., Herrero, P., Saffitz, J.E., and Schaffer, J.E. (2001). A novel mouse model of lipotoxic cardiomyopathy. J. Clin. Invest. 107:813–822.PubMedGoogle Scholar
  38. 38.
    Unger, R.H., and Orci, L. (2001). Diseases of liporegulation: New perspective on obesity and related disorders. FASEB J. 15:312–321.PubMedCrossRefGoogle Scholar
  39. 39.
    Finck, B.N., Lehman, J.J., Leone, T.C., Welch, M.J., Bennett, M.J., Kovacs, A., et al. (2002). The cardiac phenotype induced by PPARa overexpression mimics that caused by diabetes mellitus. J. Clin. Invest. 109:121–130.PubMedCrossRefGoogle Scholar
  40. 40.
    Pulkki, K.J. (1997) Cytokines and cardiomyocyte death. Ann. Med. 29:339–343.PubMedGoogle Scholar
  41. 41.
    Ginsberg, H.N., and Tuck, C. (2001). Diabetes and dyslipidemia. In: Johnstone, M.J. and Veves, A. (eds). Diabetes and Cardiovascular Disease. Totowa, NJ: Humana Press, pp 131–147.CrossRefGoogle Scholar
  42. 42.
    Lopaschuk, G.D. (1996). Fatty acid metabolism in the heart following diabetes. In: Chatham, J.C., Forder, J.R., and McNeill, J.H. (eds). The Heart in Diabetes. Norwell, MA: Kluwer Academic, pp. 215–251.Google Scholar
  43. 43.
    Rosen, P., Nawroth, P.P., King, G., Moller, W., Tritschler, H.J., and Packer, L. (2001). The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab. Res. Rev. 17:189–212.PubMedCrossRefGoogle Scholar
  44. 44.
    Murthy, V.K. and Shipp, J.C. (1997). Accumulation of myocardial triglycerides ketotic diabetes; evidence for increased biosynthesis. Diabetes 26:222–229.CrossRefGoogle Scholar
  45. 45.
    Paulson, D.J. and Crass, M.F. III. (1982). Endogenous triacylglycerol metabolism in diabetic heart. Am. J. Physiol. 242:H1084-H1094.PubMedGoogle Scholar
  46. 46.
    Chattopadhyay, J., Thompson, E.W., and Schmid, H.H. (1990). Elevated levels of nonesterified fatty acids in the myocardium of alloxan diabetic rats. Lipids 25:307–310.PubMedCrossRefGoogle Scholar
  47. 47.
    Avogaro, A., Nosadini, R., Doria, A., Fioretto, P., Velussi, M., Vigorito, C., et al. (1990). Myocardial metabolism in insulin-deficient diabetic humans without coronary artery disease. Am. J. Physiol. 258:E606-E618.PubMedGoogle Scholar
  48. 48.
    Sparagna, G.C., Hickson-Bick, D.L., Buja, L.M., and McMillin, J.B. (2000). A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am. J. Physiol. Heart Circ. Physiol. 279:H2124-H2132.PubMedGoogle Scholar
  49. 49.
    Hickson-Bick, D.L., Buja, M.L., and McMillin, J.B. (2000). Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes. J. Mol. Cell. Cardiol. 32: 511–519.PubMedCrossRefGoogle Scholar
  50. 50.
    Kong, J.Y., and Rabkin, S.W. (2000). Palmitate-induced apoptosis in cardiomyocytes is mediated through alterations in mitochondria: Prevention by cyclosporin A. Biochim. Biophys. Acta 1485:45–55.PubMedGoogle Scholar
  51. 51.
    Listenberger, L.L., Ory, D.S., and Schaffer, J.E. (2001). Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J. Biol. Chem. 276:14890–14895.PubMedCrossRefGoogle Scholar
  52. 52.
    Hickson-Bick, D.L., Sparagna, G.C., Buja, L.M., McMillin, J.B. (2002). Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS. Am. J. Physiol. Heart Circ. Physiol. 282:H656-H664.PubMedGoogle Scholar
  53. 53.
    Esposito, K., Nappo, F., Marfella, R., Giugliano, G., Giugliano, F., Ciotola, M., et al. (2002). Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation 106:2067–2072.PubMedCrossRefGoogle Scholar
  54. 54.
    Meldrum, D.R. (1998). Tumor necrosis factor in the heart. Am. J. Physiol. 274:R577-R595.PubMedGoogle Scholar
  55. 55.
    Sack, M.N. (2002). Tumor necrosis factor-alpha in cardiovascular biology and the potential role for anti-tumor necrosis factor-alpha therapy in heart disease. Pharmacol. Ther. 94:123–135.PubMedCrossRefGoogle Scholar
  56. 56.
    Grimble, R.F. (2002). Inflammatory status and insulin resistance. Curr. Opin. Clin. Nutr. Metab. Care 5:551–559.PubMedCrossRefGoogle Scholar
  57. 57.
    Giroir, B.P., Johnson, J.H., Brown, T., Allen, G.L., and Beutler, B. (1992). The tissue distribution of tumor necrosis factor biosynthesis during endotoxemia. J. Clin. Invest. 90:693–698.PubMedGoogle Scholar
  58. 58.
    Depre, C., Young, M.E., Ying, J., Ahuja, H.S., Han, Q., Garza, N., et al. (2000). Streptozotocin-induced changes in cardiac gene expression in the absence of severe contractile dysfunction. J. Mol. Cell. Cardiol. 32:985–996.PubMedCrossRefGoogle Scholar
  59. 59.
    Bryant, D., Becker, L., Richardson, J., Shelton, J., Franco, F., Peshock, R., et al. (1998). Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 97:1375–1381.PubMedGoogle Scholar
  60. 60.
    Song, W., Lu, X., and Feng, Q. (2000). Tumor necrosis factor-alpha induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes. Cardiovasc. Res. 45:595–602.PubMedCrossRefGoogle Scholar
  61. 61.
    Klein, J.B., Wang, G., Zhou, Z., Burdi, A., and Kang, Y.J. (2002). Inhibition of tumor necrosis factor-a-dependent cardiomyocyte apoptosis by metallothionein. Cardiovasc. Toxicol. 2:209–217.PubMedGoogle Scholar
  62. 62.
    Scarabelli, T.M., Stephanou, A., Pasini, E., Comini, L., Raddino, R., Knight, R.A., and Latchman, D.S. (2002). Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circ. Res. 90:745–748.PubMedCrossRefGoogle Scholar
  63. 63.
    Nakagami, H., Morishita, R., Yamamoto, K., Yoshimura, S.I., Taniyama, Y., Aoki, M., et al. (2001). Phosphorylation of p38 mitogen-activated protein kinase downstream of bax-caspase-3 pathway leads to cell death induced by high D-glucose in human endothelial cells. Diabetes 50:1472–1481.PubMedCrossRefGoogle Scholar
  64. 64.
    Rajagopalan, S., Kurz, S., Munzel, T., Tarpey, M., Freeman, B.A., Griendling, K.K., and Harrison, D.G. (1996). Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 97:1916–1923.PubMedGoogle Scholar
  65. 65.
    Berry, C., Hamilton, C.A., Brosnan, M.J., Magill, F.G., Berg, G.A., McMurray, J.J., et al. (2000). Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries. Circulation 101:2206–2212.PubMedGoogle Scholar
  66. 66.
    Monkemann, H., De Vriese, A.S., Blom, H.J., Kluijtmans, L.A., Heil, S.G., Schild, H.H., et al. (2002). Early molecular events in the development of the diabetic cardiomyopathy. Amino Acids 23:331–336.PubMedCrossRefGoogle Scholar
  67. 67.
    Listenberger, L.L., and Schaffer, J.E. (2002). Mechanisms of lipoapoptosis: Implications for human heart disease. Trends Cardiovasc. Med. 12:134–138.PubMedCrossRefGoogle Scholar
  68. 68.
    Ohuwa, T., Sato, Y., and Naoi, M. (1995). Hydroxyl radical formation in diabetic rats induced by streptozotocin. Life Sci. 56:1789–1798.CrossRefGoogle Scholar
  69. 69.
    Pennathur, S., Wagner, J.D., Leeuwenbergh, C., Litwak, K.N., and Heinecke, J.W. (2001). A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J. Clin. Invest. 107: 853–860.PubMedGoogle Scholar
  70. 70.
    Cai, L., Sun, X., Li, Y., Wang, L., and Kang, Y.J. (2003). Inhibition of peroxynitrite-induced damage is involved in metallothionein prevention of diabetic cardiotoxicity. Toxicol. Sci. 72(Suppl. 1):36.Google Scholar
  71. 71.
    Desco, M.C., Asensi, M., Marquez, R., Martinez-Valls, J., Vento, M., Pallardo, F.V., et al. (2002). Xanthine oxidase is involved in free radical production in type 1 diabetes: Protection by allopurinol. Diabetes 51:1118–1124.PubMedCrossRefGoogle Scholar
  72. 72.
    Nishikawa, T., Edelstein, D., Du, X.L., Yamagishi, S., Matsumura, T., Kaneda, Y., et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790.PubMedCrossRefGoogle Scholar
  73. 73.
    Tanaka, Y., Konno, N., and Kako, K.J. (1992). Mitochondrial dysfunction observed in situ in cardiomyocytes of rats in experimental diabetes. Cardiovasc. Res. 26:409–414.PubMedCrossRefGoogle Scholar
  74. 74.
    Flarsheim, C.E., Grupp, I.L., and Matlib, M.A. (1996). Mitochondrial dysfunction accompanies diastolic dysfunction in diabetic rat heart. Am. J. Physiol. 271:H192-H202.PubMedGoogle Scholar
  75. 75.
    Aikawa, R., Nitta-Komatsubara, Y., Kudoh, S., Takano, H., Nagai, T., Yazaki, Y., et al. (2002). Reactive oxygen species induce cardiomyocyte apoptosis partly through TNF-alpha. Cytokine 18:179–183.PubMedCrossRefGoogle Scholar
  76. 76.
    Bajt, M.L., Ho, Y.S., Vonderfecht, S.L., and Jaeschke, H. (2002). Reactive oxygen as modulator of TNF and fas receptor-mediated apoptosis in vivo: Studies with glutathione peroxidase-deficient mice. Antioxid. Redox Signal 4:733–740.PubMedCrossRefGoogle Scholar
  77. 77.
    Higuchi, Y., Otsu, K., Nishida, K., Hirotani, S., Nakayama, H., Yamaguchi, O., et al. (2002). Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol. 34:233–240.PubMedCrossRefGoogle Scholar
  78. 78.
    Machida, Y., Kubota, T., Kawamura, N., Funakoshi, H., Ide, T., Utsumi, H., et al. (2003). Overexpression of tumor necrosis factor-α increases production of hydroxyl radical in murine myocardium. Am. J. Physiol. Heart Circ. Physiol. 284:H449-H455.PubMedGoogle Scholar
  79. 79.
    Kulisz, A., Chen, N., Chandel, N.S., Shao, Z., and Schumacker, P.T. (2002). Mitochondrial ROS initiate phosphor-ylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am. J. Physiol. Lung Cell. Mol. Physiol. 282: L1324-L1329.PubMedGoogle Scholar
  80. 80.
    Pacher, P., Liaudet, L., Soriano, F.G., Mabley, J.G., Szabo, E., and Szabo, C. (2002). The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes 51:514–521.PubMedCrossRefGoogle Scholar
  81. 81.
    Kajstura, J., Cheng, W., Reiss, K., Clark, W.A., Sonnenblick, E.H., Krajewski, S., et al. (1996). Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab. Invest. 74:86–107.PubMedGoogle Scholar
  82. 82.
    Cai, L. and Kang, Y.J. (2001). Metallothionein prevents diabetic cardiomyopathy. Toxicol. Sci. 60(Suppl. 1):13.Google Scholar
  83. 83.
    Cai, L., Li, W., Sun X., Li, Y., and Kang, Y.J. (2002). Prevention of diabetic cardiomyopathy by metallothionein through suppression of hyperglycemia-induced oxidative stress and cell death. Toxicol. Sci. 66(Suppl. 1):288.Google Scholar
  84. 84.
    Kang, Y.J. (1999). The antioxidant function of metallothionein in the heart. Proc. Soc. Exp. Biol. Med. 222: 263–273.PubMedCrossRefGoogle Scholar
  85. 85.
    Cai, L., Klein, J.B., and Kang, Y.J. (2000). Metallothionein inhibits peroxynitrite-induced DNA and lipoprotein damage. J. Biol. Chem. 275:38957–38960.PubMedCrossRefGoogle Scholar
  86. 86.
    Dai, S. and McNeill, J.H. (1995). Ascorbic acid supplementation prevents hyperlipidemia and improves myocardial performance in streptozotocin-diabetic rats. Diabetes Res. Clin. Pract. 27:11–18.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisville
  2. 2.Jewish Hospital Heart and Lung InstituteLouisville
  3. 3.Department of MedicineUniversity of Louisville School of MedicineLouisville

Personalised recommendations