Clinical Reviews in Allergy & Immunology

, Volume 31, Issue 2–3, pp 163–180

β2-Agonists and exercise-induced asthma

  • Sandra D. Anderson
  • Corinne Caillaud
  • John D. Brannan
Article

Abstract

β2-Agonists taken immediately before exercise provide significant protection against exercise-induced asthma (EIA) in most patients. However, when they are taken daily, there are some negative aspects regarding severity, control, and recovery from EIA. First, there is a significant minority (15–20%) of asthmatics whose EIA is not prevented by β2-agonists, even when inhaled corticosteroids are used concomitantly. Second, with daily use, there is a decline in duration of the protective effect of long-acting β2-agonists. Third, if breakthrough EIA occurs, recovery of lung function is slower in response to a β2-agonist, and additional doses are often required to achieve pre-exercise values. If a person who takes a β2-agonist daily experiences problems with exercise, then the physician should consider changing the treatment regimen to achieve better control of EIA. These problems likely result from desensitization of the β2-receptor on the mast cell, which enhances mediator release, and on the bronchial smooth muscle, which enhances the bronchoconstrictor response and delays recovery from EIA. These effects are reversed within 72 h after cessation of a β2-agonists. The important clinical question is: Are we acutally compromising the beneficial effects of β2-agonists on the prevention and recovery from EIA by prescribing them daily? Patients with EIA need to ensure that their doses of inhaled corticosteroid or other anti-inflammatory therapy are optimized so that, if necessary, a β2-agonist can be used intermittently as prophylactic medication with greater confidence in the outcome.

Index Entries

β2-agonists tolerance mast cells exercise-induced asthma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, S. D. (1997), Exercise-induced asthma, in Allergy & Allergic Diseases, Kay, A. B., ed. Blackwell Scientific Publications, Oxford, pp. 692–711.Google Scholar
  2. 2.
    Sterk, P. J., Fabbri, L. M., Quanjer, P. H., et al. (1993). Airway responsiveness: Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Eur. Respir. J. 6, 53–83.Google Scholar
  3. 3.
    Task Force on Recognizing and Diagnosing Exercise-Related Asthma, Respiratory and Allergic Diseases in Sport (2005), Evidence-based recommendations for diagnosis of exercise-induced asthma in athletes. Eur. Respir. Mon. 33, 102–104.CrossRefGoogle Scholar
  4. 4.
    Kemp, J. P., Dockhorn, R. J., Shapiro, G. G., et al. (1998), Montelukast once daily inhibits exercise-induced bronchoconstriction in 6- to 14-year-old children with asthma. J. Pediatr. 133, 424–428.PubMedCrossRefGoogle Scholar
  5. 5.
    Edelman, J. M., Turpin, J. A., and Bronsky, E. A. (2000), Oral Montelukast compared with inhaled salmeterol to prevent exercise-induced bronchoconstriction. Ann. Intern. Med. 132, 97–104.PubMedGoogle Scholar
  6. 6.
    Patessio, A., Podda, A., Carone, M., Trombetta, N., and Donner, C. F., (1991), Protective effect and duration of action of formoterol aerosol on exercise-induced asthma. Eur. Respir. J. 4, 296–300.PubMedGoogle Scholar
  7. 7.
    Anderson, S. D., Rodwell, L. T., Du Toit, J., and Young, I. H. (1991), Duration of protection by inhaled salmeterol in exercise-induced asthma. Chest 100, 1254–1260.PubMedCrossRefGoogle Scholar
  8. 8.
    Kemp, J. P., Dockhorn, R. J., Busse, W. W., and Bleecker, E. R. (1994), Prolonged effect of inhaled salmeterol against exercise-induced bronchospasm. Am. J. Respir. Crit. Care Med. 150, 1612–1615.PubMedGoogle Scholar
  9. 9.
    Anderson, S. D., Lambert, S., Brannan, J. D., et al. (2001), Laboratory protocol for exercise asthma to evaluate salbutamol given by two devices. Med. Sci. Sports Exerc. 33, 893–900.PubMedCrossRefGoogle Scholar
  10. 10.
    Anderson, S. D., Sue-Chu, M., Perry, C. P., et al. (2006), Bronchial challenges in athletes applying to inhale a b2-agonist at the 2004 summer Olympics. J. Allergy Clin. Immunol. 117, 767–773.PubMedCrossRefGoogle Scholar
  11. 11.
    Asthma Management Handbook 2002, National Asthma Council Australia. National Asthma Council Australia Ltd, South Melbourne.Google Scholar
  12. 12.
    Mims Annual 1999, Caswell, A., ed. MediMedia Australia Pty Ltd, Sydney, pp. 2–92.Google Scholar
  13. 13.
    Weiler, J. M., Nathan, R. A., Rupp, N. T., Kalberg, C. J., Emmett, A., and Dorinsky, P. M. (2005), Effect of fluticasone/salmeterol administered via a single device on exercise-induced bronchospasm in patients with persistent asthma. Ann. Allergy Asthma Immunol. 94, 65–72.PubMedGoogle Scholar
  14. 14.
    Inman, M. D. and O'Byrne, P. M. (1996), The effect of regular inhaled albuterol on exercise-induced bronchoconstriction. Am. J. Respir. Crit. Care Med. 153, 65–69.PubMedGoogle Scholar
  15. 15.
    Hancox, R. J., Subbarao, P., Kamada, D., Watson, R. M., Hargreave, F. E., and Inman, M. D. (2002), Beta2-agonist tolerance and exercise-induced bronchospasm. Am. J. Respir. Crit. Care Med. 165, 1068–1070.PubMedGoogle Scholar
  16. 16.
    Dhillon, D. P. (1991), Studies in exercise-induced asthma. Eur. Respir. Rev. 1, 265–276.Google Scholar
  17. 17.
    Ramage, L., Lipworth, B. J., Ingram C. G., Cree, I. A., and Dhillon, D. P. (1994), Reduced protection against exercise induced bronchoconstriction after chronic dosing with salmeterol. Respir. Med. 88, 363–368.PubMedCrossRefGoogle Scholar
  18. 18.
    Nelson, J. A., Strauss, L., Skowronski, M., Ciufo, R., Novak, R., and McFadden, E. R. (1998), Effect of long-term salmeterol treatment on exercise-induced asthma. N. Engl. J. Med. 339, 141–146.PubMedCrossRefGoogle Scholar
  19. 19.
    Simons, F. E., Gerstner, T. V., and Cheang, M. S. (1997), Tolerance to the bronchoprotective effect of salmeterol in adolescents with exercise-induced asthma using concurrent inhaled glucocorticoid treatment. Pediatrics 99, 655–659.PubMedCrossRefGoogle Scholar
  20. 20.
    Storms, W., Chervinsky, P., Ghannam, A. F., Bird, S., Hustad, C. M., and Edelman, J. M. (2004), A comparison of the effects of oral montelukast and inhaled salmeterol on response to rescue bronchodilation after challenge. Respir. Med. 98, 1051–1062.PubMedCrossRefGoogle Scholar
  21. 21.
    Evans, D. W., Salome, C. M., King, G. G., Rimmer, S. J., Seale, J. P., and Woolcock, A. J. (1997), Effect of regular inhaled salbutamol on airway responsiveness and airway inflammation in rhinitic non-asthmatic subjects. Thorax 52, 136–142.PubMedGoogle Scholar
  22. 22.
    Bisgaard, H. (2000), Long-acting beta2-agonists in management of childhood asthma: A critical review of the literature. Pediatr. Pulmonol. 29, 221–234.PubMedCrossRefGoogle Scholar
  23. 23.
    Lipworth, B. J. (1997), Alfway subsensitivity with long-acting beta 2-agonists. Is there a cause for concern? Drug-Saf. 16, 295–308.PubMedGoogle Scholar
  24. 24.
    Anderson, S. D. and Brannan, J. D. (2004), Long-acting beta2-adrenoceptor agonists and exercise-induced asthma: Lessons to guide us in the future. Paediatr. Drugs 6, 161–175.PubMedCrossRefGoogle Scholar
  25. 25.
    Hanania, N. A. and Moore, R. H. (2004), Anti-inflammatory activities of beta2-agonists. Curr. Drug Targets Inflamm. Allergy 3, 271–277.PubMedCrossRefGoogle Scholar
  26. 26.
    Johnson, M. (2006), Molecular mechanisms of β2 adrenergic receptor function, response and regulation. J. Allergy Clin. Immunol. 117, 18–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Hayes, M. J., Qing, F., Rhodes, C. G., et al. (1996), In vivo quantification of human pulmonary beta-adrenoceptors: effect of beta-agonist therapy. Am. J. Respir. Crit. Care Med. 154, 1277–1283.PubMedGoogle Scholar
  28. 28.
    Haney, S. and Hancox, R. J. (2005), Rapid onset of tolerance to beta-agonist bronchodilation. Respir Med. 99, 566–571.PubMedCrossRefGoogle Scholar
  29. 29.
    Shapiro, G. S., Yegen, Ü., Xiang, J., Kottakis, J., and Della Cioppa, G. (2002), A randomized, double-blind, single-dose, crossover clinical trial of the onset and duration of protection from exercise-induced bronchoconstriction by formoterol and albuterol. Clin. Ther. 24, 2077–2087.PubMedCrossRefGoogle Scholar
  30. 30.
    Grönneröd, T. A., Von Berg, A., Schwabe, G., and Soliman, S. (2000), Formoterol via Turbuhaler® gave better protection than terbutaline against repeated exercise challenge for up to 12 hours in children and adolescents. Respir. Med. 94, 661–667.PubMedCrossRefGoogle Scholar
  31. 31.
    Green, C. P. and Price, J. F. (1992), Prevention of exercise induced asthma by inhaled salmeterol zinofoate. Arch. Dis. Child. 67, 1014–1017.PubMedGoogle Scholar
  32. 32.
    Nielsen, K. G., Skov, M., Klug, B., Ifversen, M., and Bisgaard, H. (1997), Flow dependent effect of formoterol dry-powder inhaled from the Aeroliser®. Eur. Respir. J. 10, 2105–2109.PubMedCrossRefGoogle Scholar
  33. 33.
    Daugbjerg, P., Nielsen, K. G., Skov, M., and Bisgaard, H. (1996), Dunation of action of formoterol and salbutamol dry-powder inhalation in prevention of exercise-induced asthma in children. Acta Paediatr. 25: 684–687.Google Scholar
  34. 34.
    Bensch, G., Berger, W. E., Blokhin, B. M., et al. (2002), One-year efficacy and safety of inhaled formoterol dry powder in children with persistent asthma. Ann. Allergy Asthma Immunol. 89, 180–190.PubMedGoogle Scholar
  35. 35.
    Anderson, S. D., Bye, P. T. P., Schoeffel, R. E., Seale, J. P., Taylor, K. M., and Ferris, L. (1981), Arterial plasma histamine levels at rest, during and after exercise in patients with asthma: Effects of terbutaline aerosol. Thorax 36, 259–267.PubMedGoogle Scholar
  36. 36.
    Yates, D. H., Kharitonov, S., and Barnes, P. J. (1996), An inhaled glucocorticoid does not preveent tolerance to the protective effect of a long-acting inhaled beta 2-agonist. Am. J. Respir. Crit. Care Med. 154, 1603–1607.PubMedGoogle Scholar
  37. 37.
    Cockcroft, D., Swystun, V. A., and Ghagat, R. (1995), Interaction of inhaled beta 2 agonist and inhaled corticosteroid on airway responsiveness to allergen and methacholine. Am. J. Respir. Crit. Care Med. 152, 1485–1489.PubMedGoogle Scholar
  38. 38.
    Hancox, R. J., Aldridge, E. E., Cowan, J. O., et al. (1999), Tolerance to beta-agonists during acute bronchoconstriction. Eur. Respir. J. 14, 283–287.PubMedCrossRefGoogle Scholar
  39. 39.
    Jones, S. L., Cowan, J. O., Flannery, E. M., Hancox, R. J., Herbison, G. P., and Taylor, D. R. (2001), Reversing acute bronchoconstriction in asthma: the effect of bronchodilator tolerance after treatment with formoterol. Eur. Respir. J. 17, 368–373.PubMedCrossRefGoogle Scholar
  40. 40.
    Booth, H., Bish, R., Walters, J., Whitehead, F., and Walters, E. H. (1996), Salmeterol tachyphylaxis in steroid treated asthmatic subjects. Thorax 51, 1100–1104PubMedGoogle Scholar
  41. 41.
    Henriksen, J. M., Agertoft, L., and Pedersen, S. (1992), Protective effect and duration of action of inhaled formoterol and salbutamol on exercise-induced asthma in children. J. Allergy Clin. Immunol. 89, 1176–1182.PubMedCrossRefGoogle Scholar
  42. 42.
    Boner, A. L., Spezia, E., Piovesan, P., Chiocca, E., and Maiocchi, G. (1994), Inhaled formoterol in the prevention of exercise-induced bronchoconstriction in asthmatic children. Am. J. Respir Crit. Care Med. 149, 935–938.PubMedGoogle Scholar
  43. 43.
    Carlsen, K. H., Roksund, O., Olsholt, K., Nija, F., Leegard, J., and Bratten, G. (1995), Overnight protection by inhaled salmeterol on exercise-induced asthma in children. Eur. Respir. J. 8, 1852–1855.PubMedCrossRefGoogle Scholar
  44. 44.
    de Benedictis, F. M., Tuteri, G., Pazzelli, P., Niccoli, A., Mezzetti, D., and Vaccaro, R. (1996), Salmeterol in exercise-induced bronchoconstriction in asthmatic children: comparison of two doses. Eur. Respir. J. 9, 2099–2103.PubMedCrossRefGoogle Scholar
  45. 45.
    Wraight, J. M., Hancox, R. J., Herbison, G. P., Cowan, J. O., Flannery, E. M., and Taylor, D. R. (2003), Bronchodilator tolerance: the impact of increasing bronchoconstriction. Eur. Respir. J. 21, 810–815.PubMedCrossRefGoogle Scholar
  46. 46.
    Aldridge, R. E., Hancox, R. J., Robin Taylor, D., et al. (2000), Effects of terbutaline and budesonide on sputum cells and bronchial hyperresponsiveness in asthma. Am. J. Respir. Crit. Care Med. 161, 1459–1464.PubMedGoogle Scholar
  47. 47.
    Swystun, V. A., Gordon, J. R., Davis, E. B., Zhand, X., and Cockcroft, D. W. (2000), Mast cell tryptase release and asthmatic responses to allergen increase with regular use of salbutamol. J. Allergy Clin. Immunol. 106, 57–64.PubMedCrossRefGoogle Scholar
  48. 48.
    Cheung, D., Timmers, M. C., Zwinderman, A. H., Bel, E. H., Dijkman, J. H., and Sterk, P. J. (1992), Lonterm effects of a long acting beta 2-adrenoceptor agonist, salmeterol, on airway hyperresponsiveness in patients with mild asthma. N. Engl. J. Med. 328, 665, 666.Google Scholar
  49. 49.
    Kalra, S., Swystun, V. A., Bhagat, R., and Cockcroft, D. W. (1996), Inhaled corticosteroids do not prevent the development of tolerance to the broncho-protective effect of salmeterol, Chest 109, 953–956.PubMedGoogle Scholar
  50. 50.
    Lim, S., Jatakanan, A., John, M., et al. (1999), Effect of inhaled budesonide on lung function and airway inflammation. Am. J. Respir. Crit. Care Med. 159, 22–30.PubMedGoogle Scholar
  51. 51.
    Mak, J. C. W., Roffel, F., Katsunuma, T., Elzinga, C. R. S., Zaagsma, J., and Barnes, P. J. (2000), Up-regulation of airway smooth muscle histamine H1 receptor mRNA, protein, and function by beta 2-adrenoceptor activation. Mol. Pharmacol. 57, 857–864.PubMedGoogle Scholar
  52. 52.
    McGraw, D. W., Almoosa, K. F., Paul, R. J., Kobilka, B. K., and Liggett, S. B. (2003), Antithetic regulation by beta-adrenergic receptors of Gq receptor signaling via phospholipase C underlies the airway beta-agonist paradox. J. Clin. Invest. 112, 619–626.PubMedCrossRefGoogle Scholar
  53. 53.
    McGraw, D. W. and Liggett, S. B. (2005), Molecular mechanisms of beta2-adrenergic receptor function and regulation. Proc. Am. Thorac. Soc. 2, 292–296; discussion 311,312.PubMedCrossRefGoogle Scholar
  54. 54.
    Liggett, S. B. (2002), Update on current concepts of the molecular basis of beta2-adrenergic receptor signaling. J. Allergy Clin. Immunol. 110, S223-S227.PubMedCrossRefGoogle Scholar
  55. 55.
    Israel, E., Chinchilli, V. M., Ford, J. G., et al. (2004) Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebocontrolled cross-over trial. Lancet 364, 1505–1512.PubMedCrossRefGoogle Scholar
  56. 56.
    Wechsler, M. E., Lehman, E., Lazarus, S. C., et al. (2006), {beta}-adrenergic Receptor Polymorphisms and Response to Salmeterol. Am. J. Respir. Crit. Care Med. 173, 519–526.PubMedCrossRefGoogle Scholar
  57. 57.
    Chong, L. K., Suvarna, K., Chess-Williams, R., and Peachell, P. T. (2004), Desensitisation of β2-adrenoceptor-mediated responses by short-acting β2-adrenoceptor agonists in human lung mast cells. Brit. J. Pharmacol. 138, 512–520.CrossRefGoogle Scholar
  58. 58.
    Scola, A. M., Chong, L. K., Suvarna, S. K., Chess-Williams, R., and Peachell, P. T. (2004), Desensitisation of mast cell β2-adrenoceptor-mediated responses by salmeterol and formoterol. Br. J. Pharmac. 141, 163–171.CrossRefGoogle Scholar
  59. 59.
    Scola, A. M., Chong, L. K., Chess-Williams, R., and Teachell, P. T. (2004), Influence of agonist intrinsic activity on desensitisation of β2-adrenoceptor-mediated responses in mast cells. Br. J. Pharmac. 143, 71–80.CrossRefGoogle Scholar
  60. 60.
    Caillaud, C., Le Creff, C., Legros, P., and Denjean, A., (2003), Strenuous exercise increases plasmatic and urinary leukotriene E4 in cyclists. Can. J. Appl. Physiol. 28, 793–806.PubMedGoogle Scholar
  61. 61.
    Mickleborough, T. D., Murray, R. L., Ionescu, A. A., and Lindley, M. R. (2003), Fish oil supplementation reduces severity of exercise-induced bronchoconstriction in elite athletes. Am. J. Respir. Crit. Care Med. 168, 1181–1189.PubMedCrossRefGoogle Scholar
  62. 62.
    Anderson, S. D. and Kippelen, P. (2005), Exercise-induced bronchoconstriction: Pathogenesis. Curr. Allergy Asthma Reports 5, 116–122.CrossRefGoogle Scholar
  63. 63.
    Holzer, K., Anderson, S. D., Chan, H.-K., and Douglass, J. (2003), Mannitol as a challenge test to identify exercise-induced bronchoconstriction in elite athletes. Am. J. Respir. Crit. Care Med. 167, 534–547.PubMedCrossRefGoogle Scholar
  64. 64.
    Leuppi, J. D., Anderson, S. D., Brannan, J. D., Belousova, E., Reddel, H. K., and Rodwell, L. T. (2005), Questionnaire responses that predict airway response to hypertonic saline. Respiration 72, 52–60.PubMedCrossRefGoogle Scholar
  65. 65.
    Anderson, S. D., Wong, R., Bennett, M., Beckert, L. (2006), Summary and knowledge and thinking about asthma and diving since 1993. Diving Hyperbar. Med. 36, 12–18.Google Scholar
  66. 66.
    Hofstra, W. B., Neijens, H. J., Duiverman, E. J., et al. (2000), Dose-response over time to inhaled fluticasone propionate: treatment of exercise- and methacholine-induced bronchoconstriction in children with asthma. Pediatr. Pulmonol. 29, 415–423.PubMedCrossRefGoogle Scholar
  67. 67.
    Jonasson, G., Carlsen, K. H., and Hultquist, C. (2000), Low-dose budesonide improves exercise-induced bronchospasm in schoolchildren. Pediatr. Allergy Immunol. 11, 120–125.PubMedCrossRefGoogle Scholar
  68. 68.
    Pedersen, S. and Hansen, O. R. (1995), Budesonide treatment of moderate and severe asthma in children: a dose-response study. J. Allergy Clin. Immunol. 95, 29–33.PubMedCrossRefGoogle Scholar
  69. 69.
    Anderson, S. D., Rozea, P. J., Dolton, R., and Lindsay, D. A. (1975), Inhaled and oral bronchodilator therapy in exercise-induced asthma. Aust. N.Z. J. Med. 5, 544–550.PubMedGoogle Scholar
  70. 70.
    Anderson, S. D., Seale, J. P., Rozea, P., Bandler, L., Theobald, G., and Lindsay, D. A. (1976), Inhaled and oral salbutamol in exercise-induced asthma. Am. Rev. Respir. Dis. 114, 493–500.PubMedGoogle Scholar
  71. 71.
    Schoeffel, R. E., Anderson, S. D., and Seale, J. P. (1981), The protective effect and duration of action of metaproteronol aerosol on exercise-induced asthma. Ann. Allergy 46, 273–275.PubMedGoogle Scholar
  72. 72.
    Smith, C. M., Anderson, S. D., and Seale, J. P. (1988), The duration of action of the combination of fenoterol hydrobromide and ipratropium bromide in protecting against asthma provoked by hyperpnea. Chest 94, 709–717.PubMedCrossRefGoogle Scholar
  73. 73.
    Woolley, M., Anderson, S. D., and Quigley, B. (1990), Duration of protective effect of terbutaline sulphate and cromolyn sodium alone and in combination on exercise-induced asthma. Chest 97, 39–45.PubMedCrossRefGoogle Scholar
  74. 74.
    Drury, D. E., Chong, L. K., Ghahramani, P., and Peachell, P. T. (1998), Influence of receptor reserve on beta-adrenoceptor-mediated responses in human lung mast cells. Br. J. Pharmacol. 124, 711–718.PubMedCrossRefGoogle Scholar
  75. 75.
    Brightling, C. E., Bradding, P., Symon, F. A., Holgate, S. T., Wardlaw, A. J., and Pavord, I. D., (2002), Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med. 346, 1699–1705.PubMedCrossRefGoogle Scholar
  76. 76.
    McFadden, E. R., Lenner, K. A., and Strohl, K. P. (1986), Postexertional airway rewarming and thermally induced asthma. J. Clin. Invest. 78, 18–25.PubMedCrossRefGoogle Scholar
  77. 77.
    Spooner, C., Spooner, G., and Rowe, B. (2003), Mast-cell stabilising agents to prevent exercise-induced bronchoconstriction. Cochrane Database Syst. Rev. 4, CD002307.Google Scholar
  78. 78.
    Church, M. K. and Hiroi, J., (1987), Inhibition of IgE-dependent histamine release from human dispersed lung mast cells by anti-allergic drugs and salbutamol. Br. J. Pharmac. 90, 421–429.Google Scholar
  79. 79.
    Silverman, M. and Andrea, T., (1972), Time course of effect of disodium cromoglycate on exercise-induced asthma. Arch. Dis. Child. 47, 419–422.PubMedGoogle Scholar
  80. 80.
    Baki, A. and Orhan, F., (2002), The effect of loratadine in exercise-induced asthma. Arch. Dis. Child. 86, 38, 39.PubMedCrossRefGoogle Scholar
  81. 81.
    Patel, K. R., (1984), Terfenadine in exercise-induced asthma. Brit. Med. J. 85, 1496, 1497.Google Scholar
  82. 82.
    Shimizu, T., Mochizuki, H., Shigeta, M., and Morikawa, A. (1997), Effect of inhaled indomethacin on exercise-induced bronchoconstriction in children with asthma. Am. J. Respir. Crit. Care Med. 155, 170–173.PubMedGoogle Scholar
  83. 83.
    Dahlén, B., Roquet, A., Inman, M. D., et al. (2002), Influence of zafirlukast and loratadine on exercise-induced bronchoconstriction. J. Allergy Clin. Immunol. 109, 789–793.PubMedCrossRefGoogle Scholar
  84. 84.
    Peroni, D. G., Piacentini, G. L., Pietrobelli, A., et al. (2002). The combination of single-dose montelukast and loratadine on exercise-induced bronchospasm in children. Eur. Respir. J. 19, 104–107.CrossRefGoogle Scholar
  85. 85.
    Hallstrand, T. S., Moody, M. W., Wurfel, M. M., Schwartz, L. B., Henderson, W. R., and Aitken, M. L. (2005), Inflammatory basis of exercise-induced bronchoconstriction. Am. J. Respir. Crit. Care Med. 472, 679–689.CrossRefGoogle Scholar
  86. 86.
    Anderson, S. D., (1985), Exercise-induced asthma. The state of the art. Chest 87S, 191S-195S.Google Scholar
  87. 87.
    C'Sullivan, S., Dahlén, B., Dahlén, S.-E., and Kumlin, M. (1996), Increased urinary excretion of the prostaglandin D2 metabolite 9α,11β-prostaglandin F2 after aspirin challenge supports mast cell activation in aspirin-induced airway obstruction. J. Allergy Clin. Immunol. 98, 421–432.CrossRefGoogle Scholar
  88. 88.
    Reiss, T. F., Hill, J. B., Harman, E., et al. (1997), Increased urinary excretion of LTE4 after exercise and attenuation of exercise-induced bronchospasm by montelukast, a cysteinylleukotriene receptor antagonist. Thorax 52, 1030–1035.PubMedCrossRefGoogle Scholar
  89. 89.
    Anderson, S. D., (1984), Is there a unifying hypothesis for exercise-induced asthma? J. Allergy Clin. Immunol. 73, 660–665.PubMedCrossRefGoogle Scholar
  90. 90.
    Anderson, S. D. and Daviskas, E., (2000), The mechanism of exercise-induced asthma is... J. Allergy Clin. Immunol. 106, 453–459.PubMedCrossRefGoogle Scholar
  91. 91.
    Eggleston, P. A., Kagey-Sobotka, A., Schleimer, R. P., and Lichtenstein, L. M., (1984), Interaction between hyperosmolar and IgE-mediated histamine release from basophils and mast cells. Am. Rev. Respir. Dis. 130, 86–91.PubMedGoogle Scholar
  92. 92.
    Brannan, J. D., Gulliksson, M., Anderson, S. D., Chew, N., and Kumlin, M., (2003), Evidence of mast cell activation and leukotriene release after mannitol inhalation. Eur. Respir. J. 22, 491–496.PubMedCrossRefGoogle Scholar
  93. 93.
    Brannan, J. D., Gulliksson, M., Anderson, S. D., Chew, N., Seale, J. P., and Kumlin, M., (2006), Inhibition of PGD2 release from mast cell protects against mannitol-induced airway narrowing. Eur. Respir. J. 27, 944–950.PubMedGoogle Scholar
  94. 94.
    Waldeck, B., (2002), Beta-adrenoceptor agonists and asthma—100 years of development. Eur. J. Pharmacol. 445, 1–12.PubMedCrossRefGoogle Scholar
  95. 95.
    Solèr, M., Joos, L., Bolliger, C. T., Elsasser, S., and Perruchoud, A. P., (1994), Bronchoprotection by salmeterol: cell stabilization or functional antagonism? Comparative effects on histamine- and AMP-induced bronchoconstriction. Eur. Respir. J. 7, 1973–1977.PubMedGoogle Scholar
  96. 96.
    Anderson, S. D., Silverman, M., Konig, P., and Godfrey, S., (1975), Exercise-induced asthma. A Review. Br. J. Dis. Chest 69, 1–39.PubMedCrossRefGoogle Scholar
  97. 97.
    Tullett, W. M., Tan, K. M., Wall, R. T., and Patel, K. R., (1985), Dose-response effect of sodium cromoglycate pressurised aerosol in exercise induced asthma. Thorax 40, 41–44.PubMedCrossRefGoogle Scholar
  98. 98.
    Patel, K. R. and Wall, R. T., (1986), Dose-duration effect of sodium cromoglycate aerosol in exercise-induced asthma. Eur. J. Respir. Dis. 69, 256–260.PubMedGoogle Scholar
  99. 99.
    Albazzaz, M. K., Neale, M. G., and Patel, K. R. (1992), Dose duration of nebulized nedocromil sodium in exercise-induced asthma. Eur. Respir. J. 5, 967–969.PubMedGoogle Scholar
  100. 100.
    Tsuji, T., Kato, T., Kimata, M., et al. (2004), Differential effects of beta2-adrenoceptor desensitization on the IgE-dependent release of chemical mediators from cultured human mast cells. Biol. Pharm. Bull. 27, 1549–1554.PubMedCrossRefGoogle Scholar
  101. 101.
    Giannini, D., Carlett, A., Dente, F. L., et al. (1996), Tolerance to the protective effect of salmeterol on allergen challenge. Chest, 110, 1452–1457.PubMedGoogle Scholar
  102. 102.
    Food and Drug Administration. (2005), Pulmonary-Allergy Drugs Advisory Committee, Available at: www.fda.gov/ohrms/2005.Google Scholar
  103. 103.
    Nielsen, K. G., Auk, I.L., Bojsen, K., Ifversen, M., Klug, B., and Bisgaard, H., (1998), Clinical effect of Diskus dry-powder inhaler at low and high inspiratory flow rates in children. Eur. Respir. J. 11, 350–354.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Sandra D. Anderson
    • 1
  • Corinne Caillaud
    • 2
  • John D. Brannan
    • 1
  1. 1.Department of Respiratory MedicineRoyal Prince Alfred HospitalCamperdownAustralia
  2. 2.School of Exercise and Sport ScienceUniversity of SydneySydneyAustralia

Personalised recommendations