Clinical Reviews in Allergy & Immunology

, Volume 24, Issue 2, pp 169–187

Pathogenesis of aspirin-exacerbated respiratory disease

Article

Abstract

The underlying respiratory disease is activated by unknown mechanism and results in an intense infiltration of mast cells and eosinophils into the entire respiratory mucosa. These cells synthesize leukotrienes (LTs) at a very high rate and mast cells also release histamine and tryptase and synthesize PGD2 a vasodilator and bronchoconstrictor. Furthermore, AERD patients under synthesize from arachidonic acid (AA) a peculiar product called lipoxins, which opposes inflammation generated by leukotrienes. Finally, cysLT1 receptors are over expressed and highly responsive to LTE4, further augmenting the underlying inflammatory disease.

This inflammatory condition is partly inhibited by synthesis of PGE2 through COX-1. PGE2 partially inhibits 5-lipogygenase conversion of AA to LTA4 and blocks release of histamine and tryptase from mast cells. When COX-1 is inhibited by ASA or NSAIDs, PGE2 synthesis stops and an enormous release of histamine and synthesis of LTs occurs. The upper respiratory reaction is mediated by both histamine and LTs but the bronchospastic reaction is mediated by LTs. The systemic effects of flush, gastric pain and hives are mediated by histamine.

Aspirin desensitization can not be explained by disappearance of LT synthesis since urine LTE4 levels are still elevated at acute ASA desensitization. However, mast cell products such as histamine, tryptase and PGD2 are no longer released or synthesized at acute desensitization. It is more likely that a diminution in number or function of cysLT receptors accounts for the diminished inflammatory response found in ASA desensitization.

Index Entries

Aspirin-exacerbated respiratory disease (AERD) leukotrienes (LTs) leukotriene E4 (LTE4leukotriene A4 (LTA4Cysteinyl leukotriene receptors (cysLTR) prostaglandin E2 (PGE2prostaglandin G2 (PGD2arachidonic acid (AA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vane, J. R. (1971), Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol. 231, 232–235.PubMedGoogle Scholar
  2. 2.
    Zembowicz, A., Jones, S. L., and Wu, K. K. (1995), Induction of cyclooxygenase-2 in human umbilical vein endothelial cells by lysophosphatidylcholine. J. Clin. Investig. 96, 1688–1692.PubMedGoogle Scholar
  3. 3.
    Hawley, C. (1999), COX-2 inhibitors. Lancet 353, 307–314.Google Scholar
  4. 4.
    Samuelsson, B., Hammarstroem, S., Murphy, R. C., and Borgeat, P. (1980), Leukotrienes and slow reacting substance of anaphylaxis (SRS-A). Allergy 35, 375–381.PubMedGoogle Scholar
  5. 5.
    Samuelsson, B., Dahlen, S. E., Lindgren, J. A., Rouzer, C. A., and Serhan, C. N. (1987), Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. [Review.] Science 237, 1171–1176.PubMedGoogle Scholar
  6. 6.
    Szczeklik, A., and Stevenson, D. D. (1999), Aspirin-induced asthma: advances in pathogenesis and management. J. Allergy Clin. Immunol. 104, 5–13.PubMedGoogle Scholar
  7. 7.
    Moneret-Vautrin, D. A., Hsieh, V., Wayoff, M., Guyot, J. L., Mouton, C., and Maria, Y. (1990), Nonallergic rhinitis with eosinophilia syndrome a precursor of the triad: nasal polyposis, intrinsic asthma, and intolerance to aspirin. Ann. Allergy 64, 513–518.PubMedGoogle Scholar
  8. 8.
    Yamashita, T., Tsuyi, H., Maeda, N., Tomoda, K., and Kumazawa, T. (1989), Etiology of nasal polyps associated with aspirin-sensitive asthma. Rhinology 8, 15–24.Google Scholar
  9. 9.
    Nasser, S. M., Pfister, R., Christie, P. E., Sousa, A. R., Barker, J., Schmitz-Schumann, M., et al. (1996), Inflammatory cell populations in bronchial biopsies from aspirin-sensitive asthmatic subjects. Am. J. Respir. Crit. Care Med. 153, 90–96.PubMedGoogle Scholar
  10. 10.
    Sousa, A., Pfister, R., Christie, P. E., Lane, S. J., Nasser, S. M., Schmitz-Schumann, M., et al. (1997), Enhanced expression of cyclo-oxygenase isoenzyme 2 (COX-2) in asthmatic airways and its cellular distribution in aspirin-sensitive asthma. Thorax 52, 940–945.PubMedGoogle Scholar
  11. 11.
    Sousa, A. R., Lams, B. E., Pfister, R., Christie, P. E., Schmitz, M., and Lee, T. H. (1997), Expression of interleukin-5 and granulocyte-macrophage colony-stimulating factor in aspirin-sensitive and non-aspirin-sensitive asthmatic airways. Am. J. Respir. Crit. Care Med. 156, 1384–1389.PubMedGoogle Scholar
  12. 12.
    Sladek, K., Dworski, R., Soja, J., Sheller, J. R., Nizankowska, E., Oates, J. A., et al. (1994), Eicosanoids in bronchoalveolar lavage fluid of aspirin-intolerant patients with asthma after aspirin challenge. Am. J. Respir. Crit. Care Med. 149, 940–946PubMedGoogle Scholar
  13. 13.
    Kowalski, M., Grzegorczy, J., Wojciechowska, B., and Sponiatowska, M. (1996), Intranasal challenge with aspirin induces cell influx and activation of eosinophils and mast cells in nasal secretions of ASA-sensitive patients. Clin. Exp. Allergy 26, 807–814.PubMedGoogle Scholar
  14. 14.
    Borish, L. (2002), Sinusitis and asthma: entering the realm of evidence-based medicine. J. Allergy Clin. Immunol. 109, 606–607.Google Scholar
  15. 15.
    Hamilos, D., Leung, D. Y. M., Wood, R., Cunningham, L., Bean, D. K., and Yasruel, Z. (1995), Evidence for distinct cytokine expression in allergic versus non-allergic chronic sinusitis. J. Allergy Clin. Immunol. 96, 537–544.PubMedGoogle Scholar
  16. 16.
    Bachert, C., Wagenmann, M., Hauser, U., and Rudack, C. (1997), IL-5 synthesis is upregulated in human nasal polyp tissue. J. Allergy Clin. Immunol. 99, 837–842.PubMedGoogle Scholar
  17. 17.
    Kowalski, M. L., Grzegorczyk, J., Pawliczak, R., Kornatowski, T., Wagrowska-Danilewicz, M., and Danilewicz, M. (2002), Decreased apoptosis and distinct profile of infiltrating cells in the nasal polyps of patients with aspirin hypersensitivity. Allergy 57, 493–500.PubMedGoogle Scholar
  18. 18.
    Bachert, C., Wagenmann, M., Rudack, C., Hopken, K., Hillebrandt, M., Wang, D., and Van Cauwenberge, P. (1998), The role of cytokines in infectious sinusitis and nasal polyposis. Allergy 53, 2–13.PubMedGoogle Scholar
  19. 19.
    Settipane, G. A. (1987), Nasal polyps: pathology, immunology and treatment. Am. J. Rhinol. 1, 119–126.Google Scholar
  20. 20.
    Stevenson, D. and Simon, R. A. Sensitivity to aspirin and nonsteroidal antiinflammatory drugs, in Allergy: Principles and Practice, Middleton, E., Jr., Ellis, E. F., Yunginger, J. W., Reed, C. E., Adkinson, N. F., Jr., and Busse, W. W., eds., vol 2, 5th ed., Mosby, St. Louis, 1998, pp. 1225–1234.Google Scholar
  21. 21.
    Stevenson, D. (2000), Approach to the patient with a history of adverse reactions to aspirin or NSAIDs: diagnosis and treatment. Allergy and Asthma Proceedings 21, 25–31.PubMedGoogle Scholar
  22. 22.
    Kakoi, H. and Hiraide, F. A. (1987), A histologic study of formation and growth of nasal polyps. Acta Otolaryngol. 103, 137–144.PubMedGoogle Scholar
  23. 23.
    Bachert, C., Gevaert, P., and Van Cauwengerge, P. (1999), Nasal polyposis—a new concept on the formation of polyps. ACI International 11, 130–135.Google Scholar
  24. 24.
    Elsner, J., Hochstetter, R., Kimming, D., and Kapp, A. (1996), Human eotaxin represents a potent activator of the respiratory burst in human eosinophils. Eur. J. Immunol. 26, 1919–1925.PubMedGoogle Scholar
  25. 25.
    Mullol, J., Ferandez-Moratal, J. C., Roca-Ferrer, J., Pujols, L., Xaubet, A., Benitez, P., et al. (2002), Cyclooxygenase 1 and 2 expression is abnormally regulated in human nasal polyps. J. Allergy Clin. Immunol. 109, 824–830.PubMedGoogle Scholar
  26. 26.
    Christie, P. E., Tagari, P., Ford-Hutchinson, A. W., Charlesson, S., Chee, P., Arm, J. P., et al. (1991), Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. Am. Rev. Respir. Dis. 143, 1025–1029.PubMedGoogle Scholar
  27. 27.
    Smith, C. M., Hawksworth, R. J., Thien, F. C., Christie, P. E., and Lee, T. H. (1992), Urinary leukotriene E4 in bronchial asthma. Eur. Respir. J. 5, 693–699.PubMedGoogle Scholar
  28. 28.
    Kumlin, M., Dahlen, B., Bjorck, T., Zetterstrom, O., Granstrom, E., and Dahlen, S. E. (1992), Urinary excretion of leukotriene E4 and 11-dehydro-thromboxane B2 in response to bronchial provocations with allergen, aspirin leukotriene D4, and histamine in asthmatics. Am. Rev. Respir. Dis. 146, 96–103.PubMedGoogle Scholar
  29. 29.
    Knapp, H. R., Sladek, K., and Fitzgerald, G. A. (1992), Increased excretion of leukotriene E4 during aspirin-induced asthma. J. Lab. Clin. Med. 119, 48–51.PubMedGoogle Scholar
  30. 30.
    Sladek, K., and Szczeklik, A. (1993), Cysteinyl leukotrienes overproduction and mast cell activation in aspirin-provoked bronchospasm in asthma. Eur. Respir. J. 6, 391–399.PubMedGoogle Scholar
  31. 31.
    Daffern, P., Muilenburg, D., Hugli, T. E., and Stevenson, D. D. (1999), Association of urinary leukotriene E4 excretion during aspirin challenges with severity of respiratory responses. J. Allergy Clin. Immunol. 104, 559–564.PubMedGoogle Scholar
  32. 32.
    Kohno, S. (1998), Lipid mediators in bronchial asthma. Allergy Clin. Immunol. International 10, 181–186.Google Scholar
  33. 33.
    Schmid, M., Gode, U., Schafer, D., and Wigand, M. E. (1999), Arachidonic acid metabolism in nasal tissue and peripheral blood cells in aspirin intolerant asthmatics. Acta Otolaryngol. 119, 277–280.PubMedGoogle Scholar
  34. 34.
    Cowburn, A. S., Sladek, K., Soja, J., Adamek, L., Nizankowska, E., Szczeklik, A., et al. (1998), Overexpression of leukotriene C4 synthese in bronchial biopsies from patients with aspirin-intolerant asthma. J. Clin. Investig. 101, 834–846.PubMedGoogle Scholar
  35. 35.
    Takasaki, J. K. M. and Matsumoto, M. (2000), The molecular characterization and tissue distribution of the human cysteinyl leukotriene cys LT (2) receptor. Biochem. Biophys. Res. Commun. 274, 316–322.PubMedGoogle Scholar
  36. 36.
    Szczeklik, A., Sladek, K., Dworski, R., Nizankowska, E., Soja, J., and Oates, J. (1996), Bronchial aspirin challenge causes specific eicosanoid response in aspirin-sensitive asthmatics. Am. J. Respir. Crit. Care Med. 154, 1608–1614.PubMedGoogle Scholar
  37. 37.
    Braccioni, F., Dorman, S. C., O’Byrne, P. M., Inman, M. D., Denburg, J. A., Parameswaran, K., et al. (2002), The effect of cysteinyl leukotrienes on the growth of eosinophil progenitors from peripheral blood and bone marrow of atopic subjects. J. Allergy Clin. Immunol. 110, 96–101.PubMedGoogle Scholar
  38. 38.
    Spada, C., Nieves, A. L., Krauss, A. H., and Woodward, D. F. (1994), Comparison of leukotriene B4 and D4 effects on human eosinophil and neutrophil motility in vitro. J. Leukoc. Biol. 55, 183–191.PubMedGoogle Scholar
  39. 39.
    Mita, H., Endoh, S., Kudoh, M., Kawagishi, Y., Kobayashi, M., Taniguchi, M., et al. (2001), Possible involvement of mast-cell activation in aspirin provocation of aspirin-induced asthma. Allergy 56, 1061–1067.PubMedGoogle Scholar
  40. 40.
    Ferreri, N. R., Howland, W. C., and Spiegelberg, H. L. (1986), Release of leukotrienes C4 and B4 and PGE2 from human monocytes stimulated with aggregated IgG, IgA and IgE. J. Immunol. 136, 4188–4193.PubMedGoogle Scholar
  41. 41.
    Ziroli, N. E., Na, H., Chow, J. M., Stankiewicz, J. A., Samter, M., and Young, M. R. (2002), Aspirinsensitive versus non-aspirin-sensitive nasal polyp patients: analysis of leukotrienes/Fas and Fasligand expression. Otolaryngol. Head Neck Surg. 126, 141–146.PubMedGoogle Scholar
  42. 42.
    Holtzman, M. J., Turk, J., and Shornick, L. P. (1992), Identification of a pharmacologically distinct prostaglandin H synthese in cultured epithelial cells. J. Biol. Chem. 267, 21,438–21,445.Google Scholar
  43. 43.
    Demoly, P., Jaffuel, D., Lequex, B., Cremion, C., Michel, F., Godard, P., et al. (1997), Prostaglandin H synthase 1 and 2 immunoreactivities in the bronchial mucosa of asthmatics. Am. J. Respir. Crit. Care Med. 155, 670–675.PubMedGoogle Scholar
  44. 44.
    Smith, W. L. and Dewitt, D. L. (1996), Cyclo-ogygenase enzymes: a review. Adv. Immunol. 62, 167–215.PubMedGoogle Scholar
  45. 45.
    Picado, C., Fernandez-Morata, J. C., Juan, M., Roca-Ferrer, J., Fuentes, M., Xaubet, A., et al. (1999), Cyclooxygenase-2 mRNA is downexpressed in nasal polyps from aspirin-sensitive asthmatics. Am. J. Respir. Crit. Care Med. 160, 291–296.PubMedGoogle Scholar
  46. 46.
    Lynch, K. R., O’Neill, G. P., Liu, Q., Im, D. S., Sawyer, N., Metters, K. M., et al. (1999), Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 339, 789–793.Google Scholar
  47. 47.
    Saru, H., Ames, R. S., Chambers, J., Ellis, C., Elshourbagy, N., and Foley, J. J. (1999), Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. Mol. Pharmacol. 56, 657–663.Google Scholar
  48. 48.
    Figueroa, D. J., Breyer, R. M., Defoe, S. K., Kargman, S., Daugherty, B. L., Waldburger, K., Liu, Q., et al. (2001), Expression of the cysteinyl leukotriene 1 receptor in normal human lung and peripheral leukocytes. Am. J. Respir. Crit. Care Med. 163, 226–233.PubMedGoogle Scholar
  49. 49.
    Heise, C. E. O. D. B. and Figuero, D. J. (2000), Characterization of the human cysteinyl leukotriene 2 receptor. J. Biol. Chem. 275, 30,531–30,536.Google Scholar
  50. 50.
    James, A. and Sampson, A. P. (2001), A tale of Two CysLTs. Clin. Exp. Allergy 31, 1660–1664.PubMedGoogle Scholar
  51. 51.
    Mita, H., Hasegawa, M., Saito, H., and Akiyama, K. (2001), Levels of cysteinyl leukotiene receptor mRNA in human peripheral leukocytes: significantly higher expression of cysteinyl leukotriene receptor 2 mRNA in eosinophils. Clin. Exp. Allergy 31, 1716–1725.Google Scholar
  52. 52.
    Arm, J. P., O’Hickey, S. P., Spur, B. W., and Lee, T. H. (1989), Airway responsiveness to histamine and leukotriene E4 in subjects with aspirin-induced asthma. Am. Rev. Respir. Dis. 140, 148–153.PubMedGoogle Scholar
  53. 53.
    Christie, P. E., Smith, C. E., and Lee, T. H. (1991), The potent and selective sulfidopeptide leukotriene antagonist, SK&F 104353, inhibits aspirin-induced asthma. Am. Rev. Respir. Dis. 144, 957–958.PubMedGoogle Scholar
  54. 54.
    Stevenson, D., Simon, R. A., Mathison, D. A., and Christiansen, S. C. (2000), Montelukast is only partially effective in inhibiting aspirin responses in aspirin sensitive asthmatics. Ann. Allergy Asthma Immunol. 85, 477–482.PubMedGoogle Scholar
  55. 55.
    Dahlen, S., Malstrom, K., Nizankowska, E., Dahlen, B., Kuna, P., Kowalski, M., et al. (2002), Improvement of aspirin-intolerant asthma by montelukast, a leukotriene anatagonist. A randomised, double blind, placebo controlled trial. Am. J. Respir. Crit. Care Med. 165, 9–14.PubMedGoogle Scholar
  56. 56.
    Szczeklik, A., Nizankowska, E., Mastalerz, L., and Bochenek, G. (2002), Myocardial ischemia possibly mediated by cysteinyl leukotrienes. J. Allergy Clin. Immunol. 109, 572–573.PubMedGoogle Scholar
  57. 57.
    Serhan, C. N. (2001), Lipoxins and aspirin-triggered 15-epi-lipoxins are endogenous components of anti-inflammation: emergence of the counterregulatory side. Arch. Immunol. Ther. Exp. 49, 177–188.Google Scholar
  58. 58.
    Sanak, M., Levy, B. D., Clish, C. B., Chiang, N., Gronert, K., Mastalerz, L., et al. (2000), Aspirin-tolerant asthmatics generate more lipoxins than aspirin-intolerant asthmatics. Eur. Respir. J. 16, 44–49.PubMedGoogle Scholar
  59. 59.
    Szczeklik, A., Nizanskowska, E., and Duplaga, M. (2000), Natural history of aspirin-induced asthma. AIANE Investigators. European Network on Aspirin-Induced Asthma. Eur. Respir. J. 16, 432–436.PubMedGoogle Scholar
  60. 60.
    Berges-Gimeno, M., Simon, R. A., and Stevenson, D. D. (2002), The natural history and clinical characteristics of aspirin exacerbated respiratory disease. Ann. Allergy Asthma Immunol. 89, 474–478.PubMedCrossRefGoogle Scholar
  61. 61.
    Szczeklik, A. (1990), The cyclooxygenase theory of aspirin-induced asthma. [Review.]. Eur. Respir. J. 3, 588–593.PubMedGoogle Scholar
  62. 62.
    Nakagawa, H., Yoshida, S., Nakabayashi, M., Akahori, K., Shoji, T., Hasegawa, H., et al. (2001), Possible relevance of virus infection for development of analgesic idiosyncrasy. Respiration 68, 422–424.PubMedGoogle Scholar
  63. 63.
    Brookes, A. (1999), The essence of SNPs. Gene 234, 177–186.PubMedGoogle Scholar
  64. 64.
    Sanak, M., Simon, Hans-Uwe, and Szxzeklik, A. (1997), Leukotriene C4 synthase promotor polymorphism and risk of aspirin-induced asthma. Lancet 350, 1599–1600.PubMedGoogle Scholar
  65. 65.
    Penrose, J. F., and Baldasaro, M. H. (1999), Leukotriene C4 synthase: a candidate gene for the aspirin-intolerant asthmatic phenotype. Allergy Asthma Proc. 20, 353–360.PubMedGoogle Scholar
  66. 66.
    Szczeklik, A., Sanak, M., Nizanskowska, E., Mastalerz, L., Bochenek, G., and Pulka, G. (1998), Leukotriene C4 synthase genetic polymorphism directs urinary cysteinyl-leukotiene response to aspirin challenge in asthma. Allergy 53, 61–67.Google Scholar
  67. 67.
    Sanak, M., and Szczeklik, A. (2000), Genetics of aspirin induced asthma. Thorax 55, S45-S47.PubMedGoogle Scholar
  68. 68.
    Van Sambeek, R. S. D., Baldasaro, M., Lam, B. K. Z. J., Yoshida, S., Yandora, C., and Drazen, J. M. P. J. (2000), 5' flanking region polymorphism of the gene encoding leukotriene C4 synthase does not correlate with the aspirin-intolerant asthma phenotype in the United States. J. Allergy Clin. Immunol. 106, 72–76.PubMedGoogle Scholar
  69. 69.
    Kawagishi, K., M. H., Taniguchi, M., Maruyama, M., Oosaki, R., Higashi, N., Kashii, T., et al. (2002), Leukotriene C4 synthase promoter polymorphism in Japanese patients with aspirin-induced asthma. J. Allergy Clin. Immunol. 109, 936–942.PubMedGoogle Scholar
  70. 70.
    Bigby, T. (2000), The leukotriene C4 synthase gene and asthma. Am. J. Respir. Cell Mol. Biol. 23, 273–276.PubMedGoogle Scholar
  71. 71.
    Pleskow, W. W., Stevenson, D. D., Mathison, D. A., Simon, R. A., Schatz, M., and Zieger, R. S. (1983), Aspirin-sensitive rhinosinusitis/asthma: spectrum of adverse reactions to aspirin. J. Allergy Clin. Immunol. 71, 574–579.PubMedGoogle Scholar
  72. 72.
    Lewis, R. A., and Austen, K. F. (1984), The biologically active leukotrienes: biosynthesis, metabolism, receptors, functions, and pharmacology. J. Clin. Investig. 73, 889–902.PubMedCrossRefGoogle Scholar
  73. 73.
    Dahlen, B. J., Kumlin, M., Margolskee, D., Larsson, C., Blomqvist, H., Williams, V. C., et al. (1993), The leukotriene receptor antagonist MK-0679 blocks airway obstruction induced by bronchial provocation with lysine-aspirin in aspirin-sensitive asthmatics. Eur. Respir. J. 6, 1018–1026,PubMedGoogle Scholar
  74. 74.
    Israel, E., Fischer, A. R., Rosenberg, M. A., Lilly, C. M., Callery, J. C., Shapiro J., et al. (1993), The pivotal role of 5-lipoxygenase products in the reaction of aspirin-sensitive asthmatics to aspirin. Am. Rev. Resp. Dis. 148, 1447–1451.PubMedGoogle Scholar
  75. 75.
    Szczeklik, A., and Serwonska, M. (1979), Inhibition of idiosyncratic reactions to aspirin in asthmatic patients by clematine. Thorax 34, 654–658.PubMedGoogle Scholar
  76. 76.
    Ferreri, N. R., Howland, W. C., Stevenson, D. D., and Spiegelberg, H. L. (1988), Release of leukotrienes, prostaglandins, and histamine into nasal secretions of aspirin-sensitive asthmatics during reaction to aspirin. Am. Rev. Respir. Dis. 137, 847–854.PubMedGoogle Scholar
  77. 77.
    Fischer, A. R., Rosenberg, M. A., Lilly, C. M., Callery, J. C., Rubin, P., Cohn, J., et al. (1994), Direct evidence for a role of the mast cell in the nasal response to aspirin in aspirin-sensitive asthma. J. Allergy Clin. Immunol. 94, 1046–1056.PubMedGoogle Scholar
  78. 78.
    Kowalski, M. L., Sliwinska-Kowalska, M., Igarashi, Y., White, M. V., Wojciechowska, B., Brayton, P., et al. (1993), Nasal secretions in response to acetyl-salicylic acid. J. Allergy Clin. Immunol. 91, 580–598.PubMedGoogle Scholar
  79. 79.
    Picado, C., Ramis, I., Rosello, J., Prat, J., Bulbena, O., Plaza, V., et al. (1992), Release of peptide leukotriene into nasal secretions after local instillation of aspirin in aspirin-sensitive asthmatic patients. Am. Rev. Respir. Dis. 145, 65–69.PubMedGoogle Scholar
  80. 80.
    Berges-Gimeno, M., Simon, R. A., and Stevenson, D. D. (2002), The effect of leukotriene modifier drugs on asa-induced asthma and rhinitis reactions. Clin. Exp. Allergy.Google Scholar
  81. 81.
    Bianco, S. R. M., and Petrini, G. (1977), Aspirin induced tolerance in aspirin-asthma detected by a new challenge test. IRCS J. Med. Sci. 5, 129–136.Google Scholar
  82. 82.
    Schmitz-Schumann, V. M., Juhl, E., and Costabel, U. (1985), Analgesic asthma-provocation challenge with acetylsalicylic acid. Atemwegs-Lungenkrankh Jahrgang 10, 479–485.Google Scholar
  83. 83.
    Kuna, P., Zielinska, E., Bpchenska-Marciniak, M., and Rozniecki, J. (1997), Early and late asthmatic response after inhalation challenge with lysine-ASA in subjects with aspirin-induced asthma. J. Allergy Clin. Immunol. 99, S411 (Abstract#1669).Google Scholar
  84. 84.
    Dahlen, B., and Melillo, G. (1998), Inhalation challenge in ASA-induced asthma. Respir. Med. 92, 373–384.Google Scholar
  85. 85.
    Patriarca, G., Nucera, E., and Di Rienzo, V. (1991), Nasal provocation test with lysine acetylsalicylate (LAS) in aspirin-sensitive patients. Ann. Allergy 67, 60–62.PubMedGoogle Scholar
  86. 86.
    Bosso, J. V., Schwartz, L. B., and Stevenson, D. D. (1991), Tryptase and histamine release during aspirin-induced respiratory reactions. J. Allergy Clin. Immunol. 88, 830–837.PubMedGoogle Scholar
  87. 87.
    Stevenson, D., and Simon, R. A. (2001), Lack of cross-reactivity between rofecoxib and aspirin in aspirin sensitive asthmatic patients. J. Allergy Clin. Immunol. 108, 47–51.PubMedGoogle Scholar
  88. 88.
    Woessner, K., Simon, R. A., and Stevenson, D. D. (2002), The safety of celecoxib in aspirin exacerbated respiratory disease. Arthritis Rheum. 46, 2201–2206.PubMedGoogle Scholar
  89. 89.
    Juergens, U. R., Christiansen, S. C., Stevenson, D. D., and Zuraw, B. L. (1992), Arachidonic acid metabolism in monocytes of aspirin-sensitive asthmatic patients before and after oral aspirin challenge. J. Allergy Clin. Immunol. 90, 636–645.PubMedGoogle Scholar
  90. 90.
    Stevenson, D. D., Arroyave, C. M., Bhat, K. N., and Tan, E. M. (1976), Oral aspirin challenges in asthmatic patients: a study of plasma histamine. Clin. Allergy 6, 493–505.PubMedGoogle Scholar
  91. 91.
    Dahlen, B., Boreus, L. O., Anderson, P., Andersson, R., and Zetterstrom, O. (1994), Plasma acetylsalicylic acid and salicylic acid levels during aspirin provocation in aspirin-sensitive subjects. Allergy 49, 43–49.PubMedGoogle Scholar
  92. 92.
    Sestini, P., Armetti, L., Gambaro, G., Pieroni, M. G., Refini, R. M., Sala, A., et al. (1996), Inhaled PGE2 prevents aspirin-induced bronchoconstriction and urinary LTE4 excretion in aspirin-sensitive asthma. Am. J. Respir. Crit. Care Med. 153, 572–575.PubMedGoogle Scholar
  93. 93.
    Szczeklik, A., Mastalerz, L., Nizankowska, E., and Cmiel, A. (1996), Protective and bronchodilator effects of prostaglandin E and salbutamol in aspirin-induced asthma. Am. J. Respir. Crit. Care Med. 153, 567–571.PubMedGoogle Scholar
  94. 94.
    Szmidt, M., and Wasiak, W. (1996), The influence of misoprostol (synthetic analogue of prostaglandin E1) on aspirin-induced bronchoconstriction in aspirin-sensitive asthma. J. Investig. Allergol. Clin. Immunol. 6, 121–125.PubMedGoogle Scholar
  95. 95.
    Kowalski, M., Ptasinski, A., Bienkiewics, B., and DuBuske, L. M. (2002), Aspirin-induced 15-HETE generation is a specific aspirin-sensitive asthma/rhinosinusitis patient identification test. J. Allergy Clin. Immunol. 209, S30.Google Scholar
  96. 96.
    Antczak, A., Montuschi, P., Kharitonov, S., Gorski, P., and Barnes, P. J. (2002), Increased exhaled cystieinyl-leukotrienes and 8-isoprostane in aspirin-induced asthma. Am. J. Respir. Crit. Care Med. 166, 301–306.PubMedGoogle Scholar
  97. 97.
    Nasser, S., Christie, P. E., Pfister, R., Sousa, A. R., Walls, A., Schmitz-Schumann, M., et al. (1996), Effect of endobronchial aspirin challenge on inflammatory cells in bronchial biopsy samples from aspirin-sensitive asthmatic subjects. Thorax 51, 64–70.PubMedCrossRefGoogle Scholar
  98. 98.
    Christie, P. E., Tagari, P., Ford-Hutchinson, A. W., Black, C., Markendorf, A., Schmitz-Schumann, M., et al. (1992), Urinary leukotriene E4 after lysineaspirin inhalation in asthmatic subjects. Am. Rev. Respir. Dis. 146, 1531–1534.PubMedGoogle Scholar
  99. 99.
    Kowalski, M. L., Pawliczak, R., Wozniak, J., Siuda, K., Poniatowska, M., Iwaszkiewicz, J., et al. (2000), Differential metabolism of arachidonic acid in nasal polyp epithelial cells cultured from aspirin-sensitive and aspirin-tolerant patients. am. J. Respir. Crit. Care Med. 161, 391–398.PubMedGoogle Scholar
  100. 100.
    Juergens, U. R., Christiansen, S. C., Stevenson, D. D., and Zuraw, B. L. (1995), Inhibition of monocyte leukotriene B4 production following aspirin desensitization. J. Allergy Clin. Immunol. 96, 148–156.PubMedGoogle Scholar
  101. 101.
    Berges-Gimeno, M., Simon, R. A., and Stevenson, D. D. (2003), Early effects of aspirin desensitization treatment in asthmatics with aspirin exacer-bated respiratory disease. Ann. Allergy Clin. Immunol. Google Scholar
  102. 102.
    Nasser, S. M. S., Patel, M., Bell, G. S., Lee, T. H. (1995), The effect of aspirin desensitization on urinary leukotriene E4 concentration in aspirinsensitive asthma. Am. J. Respir. Crit. Care Med. 151, 1326–1330.PubMedGoogle Scholar
  103. 103.
    Kopp, E., and Ghosh, S. (1994), Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265, 956–959.PubMedGoogle Scholar
  104. 104.
    Perez, G. M., Melo, M., Keegan, A. D., and Zamorano, J. (2002), Aspirin and salicylates inhibit the IL-4 and IL-13 induced activation of STAT6. J. Immunol. 168, 1428–1434.Google Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  1. 1.Allergy and Immunology DivisionScripps Clinic and The Scripps Research InstituteLa Jolla
  2. 2.Department of Experimental and Molecular MedicineThe Scripps Clinic and Research InstituteLa Jolla

Personalised recommendations