Clinical Proteomics

, Volume 2, Issue 1–2, pp 91–101 | Cite as

Assessment of protein stability in cerebrospinal fluid using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry protein profiling

  • Srikanth Ranganathan
  • Anna Polshyna
  • Georgina Nicholl
  • James Lyons-Weiler
  • Robert BowserEmail author
Open Access
Original Article


Recent studies have evaluated proper acquisition and storage procedures for the use of serum or plasma for mass spectrometry (MS)-based proteomics. The present study examines the proteome stability of human cerebrospinal fluid (CSF) over time at 23°C (room temperature) and 4°C using surface-enhanced laser desorption/ionization time-of-flight MS. Data analysis revealed that statistically significant differences in protein profiles are apparent within 4 h at 23°C and between 6 and 8 h at 4°C. Inclusion of protease and phosphatase inhibitor cocktails into the CSF samples failed to significantly reduce proteome alterations over time. We conclude that MS-based proteomic analysis of CSF requires careful assessment of sample collection procedures for rapid and optimal sample acquisition and storage.


Phosphatase Inhibitor Relative Peak Intensity Proteomic Alteration Surface Enhance Laser Desorption Ionization Sample Collection Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Petricoln, E. F., Ardekani, A. M., Hitt, B. A., et al. (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577.CrossRefGoogle Scholar
  2. 2.
    Rosty, C., Christa, L., Kuzdzal, S., et al. (2002) Identification of hepatocarcinoma-intestine-pancreas/ pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. J. Cancer Res. 62, 1868–1875.Google Scholar
  3. 3.
    Rogers, M. A., Clarke, P., Noble, J., et al. (2003) Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption Ionization and neural-network analysis: Identification of key issues affecting potential clinical utility. Cancer Res. 63, 6971–6983.PubMedGoogle Scholar
  4. 4.
    Carrette, O., Demalte, I., Scherl, A., et al. (2003) A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer's disease. Proteomics 3, 1486–1494.PubMedCrossRefGoogle Scholar
  5. 5.
    Xiao, Z., Luke, B. T., Izmirlian, G., et al. (2004) Serum proteomic profiles suggest celecoxib-modulated targets and response predictors. Cancer Res. 64, 2904–2909.PubMedCrossRefGoogle Scholar
  6. 6.
    Kozak, K. R., Su, F., Whitelegge, J. P., Faull, K., Reddy, S., and Farias-Eisner, R. (2005) Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics 5, 4589–4596.PubMedCrossRefGoogle Scholar
  7. 7.
    Norwitz, E. R., Tsen, L. C., Park, J. S., et al. (2005) Discriminatory proteomic biomarker analysis identifies free hemoglobin in the cerebrospinal fluid of women with severe preeclampsia. Am. J. Obstet. Gynecol. 193, 957–964.PubMedCrossRefGoogle Scholar
  8. 8.
    Woodrum, D., French, C., and Shamel, L. B. (1996) Stability of free prostate-specific antigen in serum samples under a variety of sample collection and sample storage conditions. Urology 48, 33–39.PubMedCrossRefGoogle Scholar
  9. 9.
    Raabe, A., Kopetsch, O., Gross, U., Zimmermann, M., and Gebhart, P. (2003) Measurements of serum S-100B protein: effects of storage time and temperature on pre-analytical stability. Clin. Chem. Lab. Med. 41, 700–703.PubMedCrossRefGoogle Scholar
  10. 10.
    Delatour, T. (2004) Performance of quantitative analyses by liquid chromatography-electrospray ionisation tandem mass spectrometry: from external calibration to isotopomer-based exact matching. Anal. Bioanal. Chem. 380, 515–523.PubMedCrossRefGoogle Scholar
  11. 11.
    Spruessel, A., Steimann, G., Jung, M., et al. (2004) Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision. Biotechniques 36, 1030–1037.PubMedGoogle Scholar
  12. 12.
    West-Nielsen, M., Hogdall, E. V., Marchiori, E., Hogdall, C. K., Schou, C., and Heegaard, N. H. H. (2005) Sample handling for mass spectrometric proteomic investigations of human sera. Anal. Chem. 77, 5114–5123.PubMedCrossRefGoogle Scholar
  13. 13.
    Hesse, C., Larsson, H., Fredman, P., et al. (2000) Measurement of apolipoprotein E (apoE) in cerebrospinal fluid. Neurochem. Res. 25, 511–517.PubMedCrossRefGoogle Scholar
  14. 14.
    Semmes, O. J., Feng, Z., Adam, B.-L., et al. (2005) Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I. Assessment of platform reproducibility. Clin. Chem. 51, 102–112.PubMedCrossRefGoogle Scholar
  15. 15.
    Carrette, O., Burkhard, P. R., Hughes, S., Hochstrasser, D. F., and Sanchez, J. C. (2005) Truncated cystatin C in cerebrospinal fluid: technical artefact or biological process? Proteomics 5, 3060–3065.PubMedCrossRefGoogle Scholar
  16. 16.
    Yuan, X., Russell, T., Wood, G., and Desiderio, D. M. (2002) Analysis of the human lumbar cerebrospinal fluid proteome. Electrophoresis 23, 1185–1196.PubMedCrossRefGoogle Scholar
  17. 17.
    Davidsson, P., Sjogren, M., Andreasen, N., et al. (2002) Studies of the pathophysiological mechanisms of frontotemporal dementia by proteome analysis of CSF proteins. Mol. Brain Res. 109, 128–133.PubMedCrossRefGoogle Scholar
  18. 18.
    Ramstrom, M., Ivonin, I., Johansson, A., et al. (2005) Cerebrospinal fluid protein patterns in neurodegenerative disease revealed by liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry. Proteomics 4, 4010–4018.CrossRefGoogle Scholar
  19. 19.
    Levine, J., Panchalingam, K., McClure, R. J., Gershon, S., and Pettegrew, J. W. (2000) Stability of CSF metabolites measured by proton NMR. J. Neural Transm. 107, 843–848.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang, J., Goodlett, D. R., Peskind, E. R., et al. (2005) Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiol. Aging 26, 207–227.PubMedCrossRefGoogle Scholar
  21. 21.
    Maccarrone, G., Birg, I., Malisch, E., et al. (2004) In-depth analysis of the human CSF proteome using protein prefractionation. Clin. Proteomics 1, 333–364.CrossRefGoogle Scholar
  22. 22.
    Hulmes, J. D., Bethea, D., Ho, K., et al. (2004) An investigation of plasma collection, stabilization, and storage procedures for proteomic analysis of clinical samples. Clin. Proteomics 1(1), 17–31.CrossRefGoogle Scholar
  23. 23.
    Marshall, J., Kupchak, P., Zhu, W., et al. (2003) Processing of serum proteins underlies the mass spectral fingerprinting of myocardial infarction. J. Proteome Res. 2, 361–372.PubMedCrossRefGoogle Scholar
  24. 24.
    You, J.-S., Gelfanova, V., Knierman, M. D., Witzmann, F. A., Wang, M., and Hale, J. E. (2005) The impact of blood contamination on the proteome of cerebrospinal fluid. Proteomics 5, 290–296.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Srikanth Ranganathan
    • 2
  • Anna Polshyna
    • 2
  • Georgina Nicholl
    • 2
  • James Lyons-Weiler
    • 2
    • 1
  • Robert Bowser
    • 2
    Email author
  1. 1.Centers for Biomedical InformaticsUniversity of PittsburghPittsburgh
  2. 2.Department of PathologyUniversity of Pittsburgh School of MedicinePittsburgh

Personalised recommendations