Cell Biochemistry and Biophysics

, Volume 46, Issue 2, pp 113–122 | Cite as

Chronotropic response of cultured neonatal rat ventricular myocytes to short-term fluid shear

  • Ilka Lorenzen-Schmidt
  • Geert W. Schmid-Schönbein
  • Wayne R. Giles
  • Andrew D. McCulloch
  • Shu Chien
  • Jeffrey H. OmensEmail author
Original Article


Ventricular myocytes are continuously exposed to fluid shear in vivo by relative movement of laminar sheets and adjacent cells. Preliminary observations have shown that neonatal myocytes respond to fluid shear by increasing their beating rate, which could have an arrhythmogenic effect under elevated shear conditions. The objective of this study is to investigate the characteristics of the fluid shear response in cultured myocytes and to study selected potential mechanisms. Cultured neonatal rat ventricular myocytes that were spontaneously beating were subjected to low shear rates (5–50/s) in a fluid flow chamber using standard culture medium. The beating rate was measured from digital microscopic recordings. The myocytes reacted to low shear rates by a graded and reversible increase in their spontaneous beating rate of up to 500%. The response to shear was substantially attenuated in the presence of the β-adrenergic agonist isoproterenol (by 86±8%), as well as after incubation with integrin-blocking RGD peptides (by 92±8%). The results suggest that the β-adrenergic signaling pathway and integrin activation, which are known to interact, may play an important role in the response mechanism.

Index Entries

Cardiomyocytes cell culture flow chamber shear rate mechanotransduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dou, J., Tseng, W. Y., Reese, T. G., and Wedeen, V. J. (2003) Combined diffusion and strain MRI reveals structure and function of human myocardial laminar sheets in vivo. Magn. Reson. Med. 50, 107–113.PubMedCrossRefGoogle Scholar
  2. 2.
    Dewey, C. F., Jr., Bussolari, S. R., Gimbrone, M. A., Jr., and Davies, P. F. (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103, 177–185.PubMedCrossRefGoogle Scholar
  3. 3.
    Sterpetti, A. V., Cucina, A., D'Angelo, L. S., Cardillo, B., and Cavallaro, A. (1992) Response of arterial smooth muscle cells to laminar flow. J. Cardiovasc. Surg. (Torino) 33, 619–624.Google Scholar
  4. 4.
    Moazzam, F., DeLano, F. A., Zweifach, B. W., and Schmid-Schonbein, G. W. (1997) The leukocyte response to fluid stress. Proc. Natl. Acad. Sci. USA 94, 5338–5343.PubMedCrossRefGoogle Scholar
  5. 5.
    Coughlin, M. F., and Schmid-Schonbein, G. W. (2004) Pseudopod projection and cell spreading of passive leukocytes in response to fluid shear stress. Biophys. J. 87, 2035–2042.PubMedCrossRefGoogle Scholar
  6. 6.
    Klein-Nulend, J., van der Plas, A., Semeins, C. M., et al. (1995) Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 9, 441–445.PubMedGoogle Scholar
  7. 7.
    Belval, T., Hellums, J. D., and Solis, R. T. (1984) The kinetics of platelet aggregation induced by fluid-shearing stress. Microvasc. Res. 28, 279–288.PubMedCrossRefGoogle Scholar
  8. 8.
    Nauli, S. M., Alenghat, F. J., Luo, Y., et al. (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137.PubMedCrossRefGoogle Scholar
  9. 9.
    Davies, P. F. (1995) Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560.PubMedGoogle Scholar
  10. 10.
    Kong, C. R., Bursac, N., and Tung, L. (2005) Mechanoelectrical excitation by fluid jets in monolayers of cultured cardiac myocytes. J. Appl. Physiol. 98, 2328–2336.PubMedCrossRefGoogle Scholar
  11. 11.
    Gopalan, S. M., Flaim, C., Bhatia, S. N., et al. (2003). Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol. Bioeng. 81, 578–587.PubMedCrossRefGoogle Scholar
  12. 12.
    Torsoni, A. S., Constancio, S. S., Nadruz, W., Jr., Hanks, S. K., and Franchini, K. G. (2003) Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ. Res. 93, 140–147.PubMedCrossRefGoogle Scholar
  13. 13.
    Shyu, K. G., Chen, C. C., Wang, B. W., and Kuan, P. (2001) Angiotensin II receptor antagonist blocks the expression of connexin43 induced by cyclical mechanical stretch in cultured neonatal rat cardiac myocytes. J. Mol. Cell. Cardiol. 33, 691–698.PubMedCrossRefGoogle Scholar
  14. 14.
    Tanaka, N., Mao, L., DeLano, F. A., et al. (1997) Left ventricular volumes and function in the embryonic mouse heart. Am. J. Physiol. 273, H1368-H1376.PubMedGoogle Scholar
  15. 15.
    Paul, S. (2003) Ventricular remodeling. Crit. Care Nurs. Clin. N. Am. 15, 407–411.CrossRefGoogle Scholar
  16. 16.
    Masuda, H., and Sperelakis, N. (1993) Inwardly rectifying potassium current in rat fetal and neonatal ventricular cardiomyocytes. Am. J. Physiol. 265, H1107-H1111.PubMedGoogle Scholar
  17. 17.
    Gomez, J. P., Potreau, D., and Raymond, G. (1994) Intracellular calcium transients from newborn rat cardiomyocytes in primary culture. Cell Calcium 15, 265–276.PubMedCrossRefGoogle Scholar
  18. 18.
    Cerbai, E., Pino, R., Sartiani, L., and Mugelli, A. (1999) Influence of postnatal-development of I(f) occurrence and properties in neonatal rat ventricular myocytes. Cardiovasc. Res. 42, 416–423.PubMedCrossRefGoogle Scholar
  19. 19.
    Kimura, H., Takemura, H., Imoto, K., Furukawa, K., Ohshika, H., and Mochizuki, Y. (1998) Relation between spontaneous contraction and sarcoplasmic reticulum function in cultured neonatal rat cardiac myocytes. Cell Signal 10, 349–354.PubMedCrossRefGoogle Scholar
  20. 20.
    Lakatta, E. G. (2004) Beyond Bowditch: the convergence of cardiac chronotropy and inotropy. Cell Calcium 35, 629–642.PubMedCrossRefGoogle Scholar
  21. 21.
    Silva, J., and Rudy, Y. (2003) Mechanism of pacemaking in I(K1)-downregulated myocytes. Circ. Res. 92, 261–263.PubMedCrossRefGoogle Scholar
  22. 22.
    Xiang, Y., Rybin, V. O., Steinberg, S. F., and Kobilka, B. (2002) Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J. Biol. Chem. 277, 34,280–34,286.Google Scholar
  23. 23.
    Abi-Gerges, N., Fischmeister, R., and Mery, P. F. (2001) G protein-mediated inhibitory effect of a nitric oxide donor on the L-type Ca2+ current in rat ventricular myocytes. J. Physiol. 531, 117–130.PubMedCrossRefGoogle Scholar
  24. 24.
    Balligand, J. L., Kelly, R. A., Marsden, P. A., Smith, T. W., and Michel, T. (1993) Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc. Natl. Acad. Sci. USA 90, 347–351.PubMedCrossRefGoogle Scholar
  25. 25.
    Devic, E., Xiang, Y., Gould, D., and Kobilka, B. (2001) Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. Mol. Pharmacol. 60, 577–583.PubMedGoogle Scholar
  26. 26.
    Orita, H., Fukasawa, M., Hirooka, S., Uchino, H., Fukui, K., and Washio, M. (1993) Modulation of cardiac myocyte beating rate and hypertrophy by cardiac fibroblasts isolated from neonatal rat ventricle. Jpn Circ. J. 57, 912–920.PubMedGoogle Scholar
  27. 27.
    Kroll, M. H., Hellums, J. D., McIntire, L. V., Schafer, A. I., and Moake, J. L. (1996) Platelets and shear stress. Blood 88, 1525–1541.PubMedGoogle Scholar
  28. 28.
    Weinbaum, S., Cowin, S. C., and Zeng, Y. (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27, 339–360.PubMedCrossRefGoogle Scholar
  29. 29.
    Schmid-Schonbein, G. W. (1999) Biomechanics of microcirculatory blood perfusion. Annu. Rev. Biomed. Eng. 1, 73–102.PubMedCrossRefGoogle Scholar
  30. 30.
    Cohn, J. N. (1995) Critical review of heart failure: the role of left ventricular remodeling in the therapeutic response. Clin. Cardiol. 18, IV4-IV12.PubMedCrossRefGoogle Scholar
  31. 31.
    Lodge, N. J., and Normandin, D. E. (1997) Alterations in Ito1, Ikr and Ik1 density in the BIO TO-2 strain of syrian myopathic hamsters. J. Mol. Cell. Cardiol. 29, 3211–3221.PubMedCrossRefGoogle Scholar
  32. 32.
    Knollmann, B. C., Knollmann-Ritschel, B. E., Weissman, N. J., Jones, L. R., and Morad, M. (2000) Remodelling of ionic currents in hypertrophied and failing hearts of transgenic mice overexpressing calsequestrin. J. Physiol. 525, 483–498.PubMedCrossRefGoogle Scholar
  33. 33.
    Janse, M. J. (2004) Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc. Res. 61, 208–217.PubMedCrossRefGoogle Scholar
  34. 34.
    Cerbai, E., Barbieri, M., and Mugelli, A. (1994) Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes isolated from hypertensive rats. J. Physiol. 481, 585–591.PubMedGoogle Scholar
  35. 35.
    Reich, K. M., Gay, C. V., and Frangos, J. A. (1990) Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell. Physiol. 143, 100–104.PubMedCrossRefGoogle Scholar
  36. 36.
    Bakker, A. D., Soejima, K., Klein-Nulend, J., and Burger, E. H. (2001) The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J. Biomech. 34, 671–677.PubMedCrossRefGoogle Scholar
  37. 37.
    Slattery, M. J., Liang, S., and Dong, C. (2005) Distinct role of hydrodynamic sheart in leukocyte-facilitated tumor cell extravasation. Am. J. Physiol. Cell. Physiol. 288, C831-C839.PubMedCrossRefGoogle Scholar
  38. 38.
    Reuter, H., Cachelin, A. B., De Peyer, J. E., and Kokubun, S. (1983) Modulation of calcium channels in cultured cardiac cells by isoproterenol and 8-bromo-cAMP. Cold Spring Harb. Symp. Quant. Biol. 48, 193–200.PubMedGoogle Scholar
  39. 39.
    Ross, R. S., and Borg, T. K. (2001) Integrins and the myocardium. Circ. Res. 88, 1112–1119.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang, Y. G., Samarel, A. M., and Lipsius, S. L. (2000) Laminin acts via beta 1 integrin signalling to alter cholinergic regulation of L-type Ca(2+) current in cat atrial myocytes. J. Physiol. 526, 57–68.PubMedCrossRefGoogle Scholar
  41. 41.
    Cheng, Q., Ross, R. S., and Walsh, K. B. (2004) Overexpression of the integrin beta(1A) subunit and the beta(1A) cytoplasmic domain modifies the beta-adrenergic regulation of the cardiac L-type Ca(2+) current. J. Mol. Cell. Cardiol. 36, 809–819.PubMedCrossRefGoogle Scholar
  42. 42.
    Communal, C., Singh, M., Menon, B., Xie, Z., Colucci, W. S., and Singh, K. (2003) beta1 integrins expression in adult rat ventricular myocytes and its role in the regulation of beta-adrenergic receptor-stimulated apoptosis. J. Cell. Biochem. 89, 381–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang, Y. G., Samarel, A. M., and Lipsius, S. L. (2000) Laminin binding to beta1-integrins selectively alters beta1- and beta2-adrenoceptor signalling in cat atrial myocytes. J. Physiol. 527, 3–9.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Ilka Lorenzen-Schmidt
    • 1
  • Geert W. Schmid-Schönbein
    • 2
  • Wayne R. Giles
    • 1
    • 2
  • Andrew D. McCulloch
    • 2
  • Shu Chien
    • 1
    • 2
  • Jeffrey H. Omens
    • 1
    • 2
    Email author
  1. 1.Department of MedicineUniversity of CaliforniaLa Jolla
  2. 2.Department of BioengineeringUniversity of CaliforniaLa Jolla

Personalised recommendations