Advertisement

Cell Biochemistry and Biophysics

, Volume 46, Issue 1, pp 1–15 | Cite as

Arrestin interaction with rhodopsin

Conceptual models
  • Anna Modzelewska
  • Slawomir Filipek
  • Krzysztof Palczewski
  • Paul S. -H. Park
Original Article

Abstract

It is becoming increasingly apparent that G protein-coupled receptors (GPCRs) can exist and function as oligomers. This notion differs from the classical view of signaling wherein the receptor has been presumed to be monomeric. Despite this shift in views, the interpretation of data related to GPCR function is still largely carried out within the framework of a monomeric receptor. Rhodopsin is a prototypical GPCR that initiates phototransduction. Like other GPCRs, the activity of rhodopsin is regulated by phosphorylation and the binding of arrestin. In the current investigation, we have explored by modeling methods the interaction of rhodopsin and arrestin under the assumption that either one or two rhodopsin molecules bind each arrestin molecule. The dimeric receptor framework may provide a more accurate representation of the system and is therefore likely to lead to a better and more accurate understanding of GPCR signaling.

Index Entries

G protein-coupled receptor arrestin oligomerization signal transduction G protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mirzadegan, T., Benko, G., Filipek, S., and Palczewski, K. (2003) Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin, Biochemistry 42, 2759–2767.PubMedCrossRefGoogle Scholar
  2. 2.
    Polans, A., Baehr, W., and Palczewski, K. (1996) Turned on by Ca2+! The physiology and pathology of Ca(2+)-binding proteins in the retina, Trends Neurosci. 19, 547–554.PubMedCrossRefGoogle Scholar
  3. 3.
    Park, P. S.-H., Filipek, S., Wells, J. W., and Palczewski, K. (2004) Oligomerization of G protein-coupled receptors: past, present, and future, Biochemistry 43, 15,643–15,656.Google Scholar
  4. 4.
    Salahpour, A., Angers, S., and Bouvier, M. (2000) Functional significance of oligomerization of G-protein-coupled receptors, Trends Endocrinol. Metab. 11, 163–168.PubMedCrossRefGoogle Scholar
  5. 5.
    Milligan, G. (2001) Oligomerisation of G-protein-coupled receptors, J. Cell Sci. 114, 1265–1271.PubMedGoogle Scholar
  6. 6.
    Gomes, I., Jordan, B. A., Gupta, A., Rios, C., Trapaidze, N., and Devi, L. A. (2001) G protein coupled receptor dimer-ization: implications in modulating receptor function, J. Mol. Med. 79, 226–242.PubMedCrossRefGoogle Scholar
  7. 7.
    George, S. R., O'Dowd, B. F., and Lee, S. P. (2002) G-protein-coupled receptor oligomerization and its potential for drug discovery, Nat. Rev. Drug Discov. 1, 808–820.PubMedCrossRefGoogle Scholar
  8. 8.
    Gazi, L., Lopez-Gimenez, J. F., and Strange, P. G. (2002) Formation of oligomers by G protein-coupled receptors, Curr. Opin. Drug Discov. Devel. 5, 756–763.PubMedGoogle Scholar
  9. 9.
    Chabre, M., and le Maire, M. (2005) Monomeric G-protein-coupled receptor as a functional unit, Biochemistry 44, 9395–9403.PubMedCrossRefGoogle Scholar
  10. 10.
    Park, P. S.-H., and Wells, J. W. (2003) Monomers and oligomers of the M2 muscarinic cholinergic receptor purified from Sf9 cells, Biochemistry 42, 12,960–12,971.Google Scholar
  11. 11.
    Chidiac, P., Green, M. A., Pawagi, A. B., and Wells, J. W. (1997) Cardiac muscarinic receptors. Cooperativity as the basis for multiple states of affinity, Biochemistry 36, 7361–7379.PubMedCrossRefGoogle Scholar
  12. 12.
    Terrillon, S., and Bouvier, M. (2004) Roles of G-protein-coupled receptor dimerization, EMBO Rep. 5, 30–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Waldhoer, M., Fong, J., Jones, R. M., et al. (2005) A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers, Proc. Natl. Acad. Sci. USA 102, 9050–9055.PubMedCrossRefGoogle Scholar
  14. 14.
    Filipek, S., Stenkamp, R. E., Teller, D. C., and Palczewski, K. (2003) G protein-coupled receptor rhodopsin: a prospectus, Annu. Rev. Physiol. 65, 851–879.PubMedCrossRefGoogle Scholar
  15. 15.
    Okada, T., Ernst, O. P., Palczewski, K., and Hofmann, K. P. (2001) Activation of rhodopsin: new insights from structural and biochemical studies, Trends Biochem. Sci. 26, 318–324.PubMedCrossRefGoogle Scholar
  16. 16.
    Mendez, A., Lem, J., Simon, M., and Chen, J. (2003) Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling, J Neurosci 23, 3124–3129.PubMedGoogle Scholar
  17. 17.
    Zhang, H., Huang, W., Zhu, X., Craft, C. M., Baehr, W., and Chen, C. K. (2003) Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction, Mol. Vis. 9, 231–237.PubMedGoogle Scholar
  18. 18.
    Elias, R. V., Sezate, S. S., Cao, W., and McGinnis, J. F. (2004) Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells, Mol. Vis. 10, 672–681.PubMedGoogle Scholar
  19. 19.
    Sokolov, M., Lyubarsky, A. L., Strissel, K. J., et al. (2002) Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation, Neuron 34, 95–106.PubMedCrossRefGoogle Scholar
  20. 20.
    Maeda, T., Imanishi, Y., and Palczewski, K. (2003) Rhodopsin phosphorylation: 30 years later, Prog. Retin. Eye Res. 22, 417–434.PubMedCrossRefGoogle Scholar
  21. 21.
    Granzin, J., Wilden, U., Choe, H. W., Labahn, J., Krafft, B., and Buldt, G. (1998) X-ray crystal structure of arrestin from bovine rod outer segments, Nature 391, 918–921.PubMedCrossRefGoogle Scholar
  22. 22.
    Hirsch, J. A., Schubert, C., Gurevich, V. V., and Sigler, P. B. (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin's regulation, Cell 97, 257–269.PubMedCrossRefGoogle Scholar
  23. 23.
    Han, M., Gurevich, V. V., Vishnivetskiy, S. A., Sigler, P. B., and Schubert, C. (2001) Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation, Structure (Camb) 9, 869–880.CrossRefGoogle Scholar
  24. 24.
    Milano, S. K., Pace, H. C., Kim, Y. M., Brenner, C., and Benovic, J. L. (2002) Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis, Biochemistry 41, 3321–3328.PubMedCrossRefGoogle Scholar
  25. 25.
    Gurevich, V. V., and Gurevich, E. V. (2003) The new face of active receptor bound arrestin attracts new partners, Structure (Camb) 11, 1037–1042.CrossRefGoogle Scholar
  26. 26.
    Lefkowitz, R. J., and Whalen, E. J. (2004) Beta-arrestins: traffic cops of cell signaling, Curr. Opin. Cell Biol. 16, 162–168.PubMedCrossRefGoogle Scholar
  27. 27.
    Lefkowitz, R. J., and Shenoy, S. K. (2005) Transduction of receptor signals by beta-arrestins, Science 308, 512–517.PubMedCrossRefGoogle Scholar
  28. 28.
    Gurevich, V. V., and Benovic, J. L. (1993) Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin, J. Biol. Chem. 268, 11,628–11,638.Google Scholar
  29. 29.
    Pulvermuller, A., Schroder, K., Fischer, T., and Hofmann, K. P. (2000) Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin, J. Biol. Chem. 275, 37,679–37,685.CrossRefGoogle Scholar
  30. 30.
    Gurevich, V. V., and Gurevich, E. V. (2004) The molecular acrobatics of arrestin activation, Trends Pharmacol. Sci. 25, 105–111.PubMedCrossRefGoogle Scholar
  31. 31.
    Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D. A., Engel, A., and Palczewski, K. (2003) Atomic-force microscopy: Rhodopsin dimers in native disc membranes, Nature 421, 127–128.PubMedCrossRefGoogle Scholar
  32. 32.
    Liang, Y., Fotiadis, D., Filipek, S., Saperstein, D. A., Palczewski, K., and Engel, A. (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes, J. Biol. Chem. 278, 21,655–21,662.Google Scholar
  33. 33.
    Jastrzebska, B., Maeda, T., Zhu, L., et al. (2004) Functional characterization of rhodopsin monomers and dimers in detergenits, J. Biol. Chem. 279, 54,663–56,675.CrossRefGoogle Scholar
  34. 34.
    Suda, K., Filipek, S., Palczewski, K., Engel, A., and Fotiadis, D. (2004) The supramolecular structure of the GPCR rhodopsin in solution and native disc membranes, Mol. Membr. Biol. 21, 435–446.PubMedCrossRefGoogle Scholar
  35. 35.
    Filipek, S., Krzysko, K. A., Fotiadis, D., et al. (2004) A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface, Photochem. Photobiol. Sci. 3, 628–638.PubMedCrossRefGoogle Scholar
  36. 36.
    Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D. A., Engel, A., and Palczewski, K. (2004) The G protein-coupled receptor rhodopsin in the native membrane, FEBS Lett. 564, 281–288.PubMedCrossRefGoogle Scholar
  37. 37.
    Giusto, N. M., Pasquare, S. J., Salvador, G. A., Castagnet, P. I., Roque, M. E., and Ilincheta de Boschero, M. G. (2000) Lipid metabolism in vertebrate retinal rod outer segments, Prog. Lipid Res. 39, 315–391.PubMedCrossRefGoogle Scholar
  38. 38.
    Saiz, L., and Klein, M. L. (2001) Structural properties of a highly polyunsaturated lipid bilayer from molecular dynamics simulations, Biophys. J. 81, 204–216.PubMedGoogle Scholar
  39. 39.
    Teller, D. C., Okada, T., Behnke, C. A., Palczewski, K., and Stenkamp, R. E. (2001) Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs), Biochemistry 40, 7761–7772.PubMedCrossRefGoogle Scholar
  40. 40.
    Palczewski, K., Kumasaka, T., Hori, T., et al. (2000) Crystal structure of rhodopsin: A G protein-coupled receptor, Science 289, 739–745.PubMedCrossRefGoogle Scholar
  41. 41.
    Okada, T., Sugihara, M., Bondar, A. N., Elstner, M., Entel, P., and Buss, V. (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure, J. Mol. Biol. 342, 571–583.PubMedCrossRefGoogle Scholar
  42. 42.
    Filipek, S. (2005) Organization of rhodopsin molecules in native membranes of rod cells-an old theoretical model compared to new experimental data, J. Mol. Model 11, 385–391.PubMedCrossRefGoogle Scholar
  43. 43.
    Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics, J Mol. Graph. 14, 33–38, 27–28.PubMedCrossRefGoogle Scholar
  44. 44.
    Darden, T., York, D., and Pedersen, L. (1993) Particle Mesh Ewald-an N.Log(N) Method for Ewald Sums in Large Systems, J Chem Phys 98, 10,089–10,092.CrossRefGoogle Scholar
  45. 45.
    MacKerell, A. D., Bashford, D., Bellott, M., et al. (1998) Allatom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B 102, 3586–3616.CrossRefGoogle Scholar
  46. 46.
    Schlenkrich, M., Brickmann, J., MacKerell, A. D., and Karplus, M. (1996) in Biological Membranes: A Molecular Perspective from Computation and Experiment (Merz, K. M., and Roux, B., eds.), Birkhauser, Boston, pp. 31–81.Google Scholar
  47. 47.
    Yin, D. X., and Mackerell, A. D. (1998) Combined ab initio empirical approach for optimization of Lennard-Jones parameters, J. Comput. Chem. 19, 334–348.CrossRefGoogle Scholar
  48. 48.
    Feller, S. E., Yin, D., Pastor, R. W., and MacKerell, A. D., Jr. (1997) Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies, Biophys. J. 73, 2269–2279.PubMedGoogle Scholar
  49. 49.
    MacKerell, A. D. (1997) Influence of water and sodium on the energetics of dimethylphosphate and its implications for DNA structure. J. Chim. Phys. Pcb 94, 1436–1447.Google Scholar
  50. 50.
    Kale, L., Skeel, R., Bhandarkar, M., et al. (1999) NAMD2: Greater scalability for parallel molecular dynamics, J. Comput. Phys. 151, 283–312.CrossRefGoogle Scholar
  51. 51.
    Koradi, R., Billeter, M., and Wuthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures, J. Mol. Graph. 14, 51–55, 29–32.PubMedCrossRefGoogle Scholar
  52. 52.
    Smith, W. C., Dinculescu, A., Peterson, J. J., and McDowell, J. H. (2004) The surface of visual arrestin that binds to rhodopsin, Mol. Vis. 10, 392–398.PubMedGoogle Scholar
  53. 53.
    Minor, D. L., Jr., and Kim, P. S. (1996) Context-dependent secondary structure formation of a designed protein sequence, Nature 380, 730–734.PubMedCrossRefGoogle Scholar
  54. 54.
    Palczewski, K., Buczylko, J., Imami, N. R., McDowell, J. H., and Hargrave, P. A. (1991) Role of the carboxyl-terminal region of arrestin in binding to phosphorylated rhodopsin, J. Biol. Chem. 266, 15,334–15,339.Google Scholar
  55. 55.
    Palczewski, K., Pulvermuller, A., Buczylko, J., and Hofmann, K. P. (1991) Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin, J. Biol. Chem. 266, 18,649–18,654.Google Scholar
  56. 56.
    Puig, J., Arendt, A., Tomson, F. L. et al. (1995) Synthetic phosphopeptide from rhodopsin sequence induces retinal arrestin binding to photoactivated unphosphorylated rhodopsin, FEBS Lett. 362, 185–188.PubMedCrossRefGoogle Scholar
  57. 57.
    Kennedy, M. J., Lee, K. A., Niemi, G. A. et al. (2001) Multiple phosphorylation of rhodopsin and the in vivo chemistry underlying rod photoreceptor dark adaptation, Neuron 31, 87–101.PubMedCrossRefGoogle Scholar
  58. 58.
    Ohguro, H., Johnson, R. S., Ericsson, L. H., Walsh, K. A., and Palczewski, K. (1994) Control of rhodopsin multiple phosphorylation, Biochemistry 33, 1023–1028.PubMedCrossRefGoogle Scholar
  59. 59.
    Mendez, A., Burns, M. E., Roca, A., et al. (2000) Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites, Neuron 28, 153–164.PubMedCrossRefGoogle Scholar
  60. 60.
    Ohguro, H., Van Hooser, J. P., Milam, A. H., and Palczewski, K. (1995) Rhodopsin phosphorylation and dephosphorylation in vivo, J. Biol. Chem. 270, 14,259–14,262.CrossRefGoogle Scholar
  61. 61.
    Papac, D. I., Oatis, J. E., Jr., Crouch, R. K., and Knapp, D. R. (1993) Mass spectrometric identification of phosphorylation sites in bleached bovine rhodopsin, Biochemistry 32, 5930–5934.PubMedCrossRefGoogle Scholar
  62. 62.
    McDowell, J. H., Nawrocki, J. P., and Hargrave, P. A. (1993) Phosphorylation sites in bovine rhodopsin, Biochemistry 32, 4968–4974.PubMedCrossRefGoogle Scholar
  63. 63.
    Gurevich, V. V., and Benovic, J. L. (1992) Cell-free expression of visual arrestin. Truncation mutagenesis identifies multiple domains involved in rhodopsin interaction, J. Biol. Chem. 267, 21,919–21,923.Google Scholar
  64. 64.
    Palczewski, K., Buczylko, J., Ohguro, H., et al. (1994) Characterization of a truncated form of arrestin isolated from bovine rod outer segments, Protein Sci 3, 314–324.PubMedGoogle Scholar
  65. 65.
    Vishnivetskiy, S. A., Hirsch, J. A., Velez, M. G., Gurevich, Y. V., and Gurevich, V. V. (2002) Transition of arrestin into the active receptor-binding state requires an extended interdomain hinge, J. Biol. Chem. 277, 43,961–43,967.CrossRefGoogle Scholar
  66. 66.
    Ridge, K. D., Abdulaev, N. G., Sousa, M., and Palczewski, K. (2003) Phototransduction: crystal clear, Trends Biochem. Sci. 28, 479–487.PubMedCrossRefGoogle Scholar
  67. 67.
    Dinculescu, A., McDowell, J. H., Amici, S. A., et al. (2002) Insertional mutagenesis and immunochemical analysis of visual arrestin interaction with rhodopsin, J. Biol. Chem. 277, 11,703–11,708.CrossRefGoogle Scholar
  68. 68.
    Sommer, M. E., Smith, W. C., and Farrens, D. L. (2005) Dynamics of arrestin-rhodopsin interactions: arrestin and retinal release are directly linked events, J. Biol. Chem. 280, 6861–6871.PubMedCrossRefGoogle Scholar
  69. 69.
    Vishnivetskiy, S. A., Hosey, M. M., Benovic, J. L., and Gurevich, V. V. (2004) Mapping the arrestin-receptor interface. Structural elements responsible for receptor specificity of arrestin proteins, J. Biol. Chem. 279, 1262–1268.PubMedCrossRefGoogle Scholar
  70. 70.
    Vishnivetskiy, S. A., Schubert, C., Climaco, G. C., Gurevich, Y. V., Velez, M. G., and Gurevich, V. V. (2000) An additional phosphate-binding element in arrestin molecule Implications for the mechanism of arrestin activation, J. Biol. Chem. 275, 41,049–41,057.CrossRefGoogle Scholar
  71. 71.
    Ling, Y., Ascano, M., Robinson, P., and Gregurick, S. K. (2004) Experimental and computational studies of the desensitization process in the bovine rhodopsin-arrestin complex, Biophys. J. 86, 2445–2454.PubMedCrossRefGoogle Scholar
  72. 72.
    Gurevich, V. V. and Benovic, J. L. (1995) Visual arrestin binding to rhodopsin. Diverse functional roles of positively charged residues within the phosphorylation-recognition region of arrestin, J. Biol. Chem. 270, 6010–6016.PubMedCrossRefGoogle Scholar
  73. 73.
    Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L., and Khorana, H. G. (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin, Science 274, 768–770.PubMedCrossRefGoogle Scholar
  74. 74.
    Meng, E. C. and Bourne, H. R. (2001) Receptor activation: what does the rhodopsin structure tell us?, Trends Pharmacol. Sci. 22, 587–593.PubMedCrossRefGoogle Scholar
  75. 75.
    Kobilka, B. K. (2002) Agonist-induced conformational changes in the β2 adrenergic receptor, J. Pept. Res. 60, 317–321.PubMedCrossRefGoogle Scholar
  76. 76.
    Krupnick, J. G., Gurevich, V. V., Schepers, T., Hamm, H. E., and Benovic, J. L. (1994) Arrestin-rhodopsin interaction. Multi-site binding delineated by peptide inhibition, J. Biol. Chem. 269, 3226–3232.PubMedGoogle Scholar
  77. 77.
    Raman, D., Osawa, S., and Weiss, E. R. (1999) Binding of arrestin to cytoplasmic loop mutants of bovine rhodopsin, Biochemistry 38, 5117–5123.PubMedCrossRefGoogle Scholar
  78. 78.
    Raman, D., Osawa, S., Gurevich, V. V., and Weiss, E. R. (2003) The interaction with the cytoplasmic loops of rhodopsin plays a crucial role in arrestin activation and binding, J. Neurochem. 84, 1040–1050.PubMedCrossRefGoogle Scholar
  79. 79.
    Kisselev, O. G., Downs, M. A., McDowell, J. H., and Hargrave, P. A. (2004) Conformational changes in the phosphorylated C-terminal domain of rhodopsin during rhodopsin arrestin interactions, J. Biol. Chem. 279, 51,203–51,207.CrossRefGoogle Scholar
  80. 80.
    Novi, F., Stanasila, L., Giorgi, F., Corsini, G. U., Cotecchia, S., and Maggio, R. (2005) Paired activation of two components within muscarinic M3 receptor dimers is required for recruitment of β-arrestin-1 to the plasma membrane, J. Biol. Chem. 280, 19,768–19,776.CrossRefGoogle Scholar
  81. 81.
    Baylor, D. A., Lamb, T. D., and Yau, K. W. (1979) Responses of retinal rods to single photons, J. Physiol. 288, 613–634.PubMedGoogle Scholar
  82. 82.
    Binder, B. M., Biernbaum, M. S., and Bownds, M. D. (1990) Light activation of one rhodopsin molecule causes the phosphorylation of hundreds of others. A reaction observed in electropermeabilized frog rod outer segments exposed to dim illumination, J. Biol. Chem. 265, 15,333–15,340.Google Scholar
  83. 83.
    Binder, B. M., O'Connor, T. M., Bownds, M. D., and Arshavsky, V. Y. (1996) Phosphorylation of non-bleached rhodopsin in intact retinas and living frogs, J. Biol. Chem. 271, 19,826–19,830.Google Scholar
  84. 84.
    Shi, G. W., Chen, J., Concepcion, F., Motamedchaboki, K., Marjoram, P., Langen, R., and Chen, J. (2005) Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells, J. Biol. Chem. 280, 41,184–41,191.Google Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  1. 1.International Institute of Molecular and Cell BiologyWarsawPoland and
  2. 2.Department of PharmacologyCase Western Reserve UniversityCleveland

Personalised recommendations