Advertisement

Cell Biochemistry and Biophysics

, Volume 45, Issue 1, pp 59–70 | Cite as

Single-step multicolor fluorescence In situ hybridization using semiconductor quantum dot-DNA conjugates

  • Laurent A. BentolilaEmail author
  • Shimon Weiss
Original Article

Abstract

We report a rapid method for the direct multicolor imaging of multiple subnuclear genetic sequences using novel quantum dot-based fluorescence in situ hybridization (FISH) probes (QD-FISH). Short DNA oligonucleotides were attached on QDs and used in a single hybridization/detection step of target sites in situ. QD-FISH probes penetrate both intact interphase nuclei and metaphase chromosomes and showed good targeting of dense chromatin domains with minimal steric hindrances. We further demonstrated that QD’s broad absorption spectra allowed different colored probes specific for distinct subnuclear genetic sequences to be simultaneously excited with a single excition wavelength and imaged free of chromatic aberrations in a single exposure. Thus, these results demonstrate that QD-FISH probes are very effective in multicolor FISH applications. This work also documents new possibilities of using QD-FISH probes detection down to the single molecule level.

Index Entries

Quantum dots FISH DNA heterochromatin centromere fluorescnece imaging microscopy hybridization biomaterial nanotechnology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nederlof, P. M., van der Flier, S., Wiegant, J., et al. (1990) Multiple fluorescence in situ hybridization. Cytometry 11, 126–131.PubMedCrossRefGoogle Scholar
  2. 2.
    Michalet, X., Pinaud, F. F., Bentolila L. A., et al. (2005) Quantum dots for live cells and in vivo imaging, diagnostics and beyond. Science 307, 538–544.PubMedCrossRefGoogle Scholar
  3. 3.
    Xiao, Y. and Barker, P. E. (2004) Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 32, e28.PubMedCrossRefGoogle Scholar
  4. 4.
    Pathak, S., Choi, S. K., Arnheim, N., and Thompson, M. E. (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 123, 4103–4104.PubMedCrossRefGoogle Scholar
  5. 5.
    Dirks, R. W., van de Rijke, F. M., Fujishita, S., van der Ploeg, M., and Raap, A. K. (1993) Methodologies for specific intron and exon RNA localization in cultured cells by haptenized and fluorochromized probes. J. Cell. Sci. 104, 1187–1197.PubMedGoogle Scholar
  6. 6.
    Vissel, B., and Choo, K. H. (1989) Mouse major (gamma) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombinantion between nonhomologous chromosomes. Genomics 5, 407–414.PubMedCrossRefGoogle Scholar
  7. 7.
    Nirmal, M., Dabbousi, B. O., Bawendi, M. G., et al. (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804.CrossRefGoogle Scholar
  8. 8.
    Banin, U., Bruchez, M., Alivisatos, A. P., Ha, T., Weiss, S., and Chemla, D. S. J. (1999) Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystals. Chem. Phys. 110, 1195–1201.CrossRefGoogle Scholar
  9. 9.
    Hohng, S., and Ha, T. (2004) Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc. 126, 1325–1325.CrossRefGoogle Scholar
  10. 10.
    Joseph, A., Mitchell, A. R., and Miller, O. J. (1989) The organization of the mouse satellite DNA at centromeres. Exp. Cell. Res. 183, 494–500.PubMedCrossRefGoogle Scholar
  11. 11.
    Doose, S., Tsay, J. M., Pinaud, F., and Weiss, S. (2005) Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy. Anal. Chem. 77, 2235–2242.PubMedCrossRefGoogle Scholar
  12. 12.
    Kuno, M., Fromm, D. P, Hamann, H. F., Gallagher, A., and Nesbitt, D. J. (2000) No exponential “blinking” kinetics of single CdSe quantum dots: a universal power law behavior. J. Chem. Phys. 112, 3117–3120.CrossRefGoogle Scholar
  13. 13.
    Silver, J., and Ou, W. (2005) Photoactivation of quantum dot fluorescence following endocytosis. Nano Lett. 5, 1445–1449.PubMedCrossRefGoogle Scholar
  14. 14.
    Hess, B. C., Okhrimenko, I. G., Davis, R. C., et al. (2001) Surface transformation and photoinduced recovery in CdSe nanocrystals. Phys. Rev. Lett. 86, 3132–3135.PubMedCrossRefGoogle Scholar
  15. 15.
    Heng, H. H., Squire, J., and Tsui, L. C. (1992) High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl. Acad. Sci. USA 89, 9509–9513.PubMedCrossRefGoogle Scholar
  16. 16.
    Wiegant, J., Kalle, W., Mullenders, L., et al. (1992) High-resolution in situ hybridization using DNA halo preparations. Hum. Mol Genet. 1, 587–591.PubMedCrossRefGoogle Scholar
  17. 17.
    Parra, I., and Windle, B. (1993) High-resolution visual mapping of stretched DNA by fluorescent hybridization. Nat. Genet. 5, 17–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Michalet, X., Ekong, R., Fougerousse, F., et al. (1997) Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277, 1518–1523.PubMedCrossRefGoogle Scholar
  19. 19.
    Crut, A., Geron-Landre, B., Bonnet, I., Bonneau, S., Desbiolles, P., and Escude, C. (2005) Detection of single DNA molecules by multicolor quantum-dot end-labeling. Nucleic Acids Res. 33, e98.PubMedCrossRefGoogle Scholar
  20. 20.
    Lacoste, T. D., Michalet, X., Pinaud, E., Chemla, D. S., Alivisatos, A. P., and Weiss, S. (2000) Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl. Acad. Sci. USA 97, 9461–9466.PubMedCrossRefGoogle Scholar
  21. 21.
    Schrock, E., du Manoir, S., Veldman, T., et al. (1996) Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497.PubMedCrossRefGoogle Scholar
  22. 22.
    Speicher, M. R., Gwyn Ballard, S., and Ward, D. C. (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH, Nat. Genet. 12, 368–375.PubMedCrossRefGoogle Scholar
  23. 23.
    Trask, B. J. (2002) Human cytogenetics: 46 chromosomes, 46 years and counting. Nat. Rev. Genet. 3, 769–778.PubMedCrossRefGoogle Scholar
  24. 24.
    Chan, P., Yuen, T., Ruf, F., et al. (2005) Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res. 33, e161.PubMedCrossRefGoogle Scholar
  25. 25.
    Xiao, Y., Telford, W. G., Ball, J. C., et al. (2005) Semiconductor nanocrystal conjugates, FISH and pH. Nat. Methods 2, 723PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of California at Los AngelesLos Angeles
  2. 2.California NanoSystems InstituteUniversity of California at Los AngelesLos Angeles
  3. 3.Department of Physiology, David Geffen School of MedicineUniversity of California at Los AngelesLos Angeles

Personalised recommendations