Cell Biochemistry and Biophysics

, Volume 44, Issue 3, pp 349–365 | Cite as

Structure-function properties of prolyl oligopeptidase family enzymes

  • Dean Rea
  • Vilmos FülöpEmail author


Prolyl oligopeptidase family enzymes regulate the activity of biologically active peptides and peptide hormones, and they are implicated in diseases, including amnesia, depression, diabetes, and trypanosomiasis. Distinctively, these enzymes hydrolyze only relatively short peptide substrates, while large structured peptides and proteins are not usually cleaved. Prolyl oligopeptidase has a C-terminal α/β-hydrolase catalytic domain that is similar to lipases and esterases. An N-terminal β-propeller domain regulates access to the buried active site, explaining the observed oligopeptidase activity. The catalytic and regulatory mechanisms have been investigated using a combination of X-ray crystallography, site-directed mutagenesis, and enzyme kinetic measurements. Crystal structures have now been determined for representative members of three of the four subfamilies and are facilitating a better understanding of the structure-function properties of these physiologically and pharmaceutically important enzymes.

Index Entries

Prolyl oligopeptidase oligopeptidase B dipeptidyl peptidase IV acylaminoacyl peptidase serine peptidase catalytic triad 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Puente, X. S., Sanchez, L. M., Overall, C. M. and Lopez-Otin, C. (2003) Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544–558.PubMedCrossRefGoogle Scholar
  2. 2.
    Rawlings, N. D., Tolle, D. P., and Barrett, A. J. (2004) MEROPS: the peptidase database. Nucleic Acids Res. 32, 160–164.CrossRefGoogle Scholar
  3. 3.
    Holmquist, M. (2000) Alpha/beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr. Protein Pept. Sci. 1, 209–235.PubMedCrossRefGoogle Scholar
  4. 4.
    Dodson, G. and Wlodawer, A. (1998) Catalytic triads and their relatives. Trends Biochem. Sci. 23, 347–352.PubMedCrossRefGoogle Scholar
  5. 5.
    Venalainen, J. I., Juvonen, R. O., and Mannisto, P. T. (2004) Evolutionary relationships of the prolyl oligopeptidase family enzymes. Eur. J. Biochem. 271, 2705–2715.PubMedCrossRefGoogle Scholar
  6. 6.
    Walter, R., Shlank, H., Glass, J. D., Schwartz, I. L., and Kerenyi, T. D. (1971) Leucylglycinamide released from oxytocin by human uterine enzyme. Science 173, 827–829.PubMedCrossRefGoogle Scholar
  7. 7.
    Koida, M. and Walter, R. (1976) Post-proline cleaving enzyme. Purification of this endopeptidase by affinity chromatography. J. Biol. Chem. 251, 7593–7599.PubMedGoogle Scholar
  8. 8.
    Wilk, S. (1983) Prolyl endopeptidase. Life Sci. 33, 2149–2157.PubMedCrossRefGoogle Scholar
  9. 9.
    Mentlein, R. (1988) Proline residues in the maturation and degradation of peptide-hormones and neuropeptides. FEBS Lett. 234, 251–256.PubMedCrossRefGoogle Scholar
  10. 10.
    Cunningham, D. F. and O’Connor, B. (1997) Proline specific peptidases. Biochim. Biophys. Acta 1343, 160–186.PubMedGoogle Scholar
  11. 11.
    Maes, M., Goossens, F., Scharpe, S., Meltzer, H. Y., D’Hondt, P., and Cosyns, P. (1994) Lower serum prolyl endopeptidase enzyme activity in major depression: further evidence that peptidases play a role in the pathophysiology of depression. Biol. Psychiatry 35, 545–552.PubMedCrossRefGoogle Scholar
  12. 12.
    Maes, M., Goossens, F., Scharpe, S., Calabrese, J., Desnyder, R., and Meltzer, H. Y. (1995) Alterations in plasma prolyl endopeptidase activity in depression, mania, and schizophrenia: effects of antidepressants, mood stabilizers, and antipsychotic drugs. Psychiatry Res. 58, 217–225.PubMedCrossRefGoogle Scholar
  13. 13.
    Yoshimoto, T., Kado, K., Matsubara, F., Koriyama, N., Kaneto, H. and Tsuru, D. (1987) Specific inhibitors for prolyl endopeptidase and their anti-amnesic effect. J. Pharmacobiodyn. 10, 730–735.PubMedGoogle Scholar
  14. 14.
    Morain, P., Lestage, P., De Nanteuil, G., et al. (2002) S17092: a prolyl endopeptidase inhibitor as a potential therapeutic drug for memory impairment. Preclinical and clinical studies. CNS Drug Rev. 8, 31–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Shinoda, M., Toide, K., Ohsawa, I., and Kohsaka, S. (1997) Specific inhibitor for prolyl endopeptidase suppresses the generation of amiloid βprotein in NG108-15 cells. Biochem. Biophys. Res. Commun. 235, 641–645.PubMedCrossRefGoogle Scholar
  16. 16.
    Kato, A., Fukunari, A., Sakai, Y., and Nakajima, Z. (1997) Prevention of amyloid-like deposition by a selective prolyl endopeptidase inhibitor, Y-29794, in senescence-accelerated mouse. J. Pharmacol. Exp. Ther. 283, 328–335.PubMedGoogle Scholar
  17. 17.
    Petit, A., Barelli, H., Morain, P., and Checler, F. (2000) Novel proline endopeptidase inhibitors do not modify Aβ40/42 formation and degradation by human cells expressing wild-type and Swedish mutated β-amyloid precursor protein. Br. J. Pharmacol. 130, 1613–1617.PubMedCrossRefGoogle Scholar
  18. 18.
    Welches, W. R., Brosnihan, K. B., and Ferrario, C. M. (1993) A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase. Life Sci. 52, 1461–1480.PubMedCrossRefGoogle Scholar
  19. 19.
    Santana, J. M., Grellier, P., Schrevel, J., and Teixeira, A. R. (1997) A Trypanosoma cruzi-secreted 80 kDa proteinase with specificity for human collagen types I and IV. Biochem. J. 325, 129–137.PubMedGoogle Scholar
  20. 20.
    Grellier, P., Vendeville, S., Joyeau, R., et al. (2001) Trypanosoma cruzi prolyl oligopeptidase Tc80 is involved in nonphagocytic mammalian cell invasion by trypomastigotes. J. Biol. Chem. 276, 47,078–47,086.CrossRefGoogle Scholar
  21. 21.
    Bastos, I. M., Grellier, P., Martins, N. F., et al. (2005) Molecular, functional and structural properties of the prolyl oligopeptidase of Trypanosoma cruzi (POP Tc80) that is required for parasite entry into mammalian cells. Biochem. J. 388, 29–38.PubMedCrossRefGoogle Scholar
  22. 22.
    Fülöp, V., Böcskei, Z., and Polgár, L. (1998) Prolyl oligopeptidase: an unusual β-propeller domain regulates proteolysis. Cell 94, 161–170.PubMedCrossRefGoogle Scholar
  23. 23.
    Wall, M. A., Coleman, D. E., Lee, E., et al. (1995) The structure of the G protein heterotrimer Giα1β1γ2. Cell 83, 1047–1058.PubMedCrossRefGoogle Scholar
  24. 24.
    Lambright, D. G., Sondek, J., Bohm, A., Skiba, N. P., Hamm, H. E., and Sigler, P. B. (1996) The 2.0 A crystal structure of a heterotrimeric G protein. Nature 379, 311–319.PubMedCrossRefGoogle Scholar
  25. 25.
    Sondek, J., Bohm, A., Lambright, D. G., Hamm, H. E., and Sigler, P. B. (1996) Crystal structure of a G-protein βγ dimer at 2.1A resolution. Nature 379, 369–374.PubMedCrossRefGoogle Scholar
  26. 26.
    Baker, S. C., Saunders, N. F., Willis, A. C., Ferguson, S. J., Hajdu, J., and Fülöp, V. (1997) Cytochrome cd 1 structure: unusual haem environments in a nitrite reductase and analysis of factors contributing to β-propeller folds. J. Mol. Biol. 269, 440–455.PubMedCrossRefGoogle Scholar
  27. 27.
    Fülöp, V. and Jones, D. T. (1999) β-Propellers: structural rigidity and functional diversity. Curr. Opin. Struct. Biol. 9, 715–721.PubMedCrossRefGoogle Scholar
  28. 28.
    Faber, H. R., Groom, C. R., Baker, H. M., Morgan, W. T., Smith, A., and Baker, E. N. (1995) 1.8 Å structure of the C-terminal domain of rabbit serum hemopexin. Structure 3, 551–559.PubMedCrossRefGoogle Scholar
  29. 29.
    Li, J., Brick, P., O’Hare, M. C., et al. (1995) Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed β-propeller. Structure 3, 341–349.CrossRefGoogle Scholar
  30. 30.
    Polgár, L. (1991). pH-dependent mechanism in the catalysis of prolyl endopeptidase from pig muscle. Eur. J. Biochem. 197, 441–447.PubMedCrossRefGoogle Scholar
  31. 31.
    Polgár, L. (1992) Prolyl endopeptidase catalysis. A physical rather than a chemical step is rate-limiting. Biochem. J. 283, 647–648.PubMedGoogle Scholar
  32. 32.
    Fülöp, V., Szeltner, Z., and Polgár, L. (2000) Catalysis of serine oligopeptidases is controlled by a gating filter mechanism. EMBO Rep. 1, 277–281.PubMedCrossRefGoogle Scholar
  33. 33.
    Szeltner, Z., Rea, D., Juhász, T., Renner, V., Fülöp, V., and Polgár, L. (2004) Concerted structural changes in the peptidase and the propeller domains of prolyl oligopeptidase are required for substrate binding. J. Mol. Biol. 340, 627–637.PubMedCrossRefGoogle Scholar
  34. 34.
    Hasebe, T., Hua, J., Someya, A., Morain, P., Checler, F., and Nagaoka, I. (2001) Involvement of cytosolic prolyl endopeptidase in degradation of p40-phox splice variant protein in myeloid cells. J. Leukoc. Biol. 69, 963–968.PubMedGoogle Scholar
  35. 35.
    Shan, L., Mathews, I. I., and Khosla, C. (2005) Structural and mechanistic analysis of two prolyl endopeptidases: role of interdomain dynamics in catalysis and specificity. Proc. Natl. Acad. Sci. U.S.A. 102, 3599–3604.PubMedCrossRefGoogle Scholar
  36. 36.
    Harris, M. N., Madura, J. D., Ming, L. J., and Harwood, V. J. (2001) Kinetic and mechanistic studies of prolyl oligopeptidase from the hyperthermophile Pyrococcus furiosus. J. Biol. Chem. 276, 19,310–19,317.Google Scholar
  37. 37.
    Fülöp, V., Szeltner, Z., Renner, V., and Polgár, L. (2001) Structures of prolyl oligopeptidase substrate/inhibitor complexes. Use of inhibitor binding for titration of the catalytic histidine residue. J. Biol. Chem. 276, 1262–1266.PubMedCrossRefGoogle Scholar
  38. 38.
    Szeltner, Z., Rea, D., Renner, V., Juliano, L., Fülöp, V., and Polgár, L. (2003) Electrostatic environment at the active site of prolyl oligopeptidase is highly influential during substrate binding. J. Biol. Chem. 278, 48,786–48,793.CrossRefGoogle Scholar
  39. 39.
    Rosenblum, J. S. and Kozarich, J. W. (2003) Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. Curr. Opin. Chem. Biol. 7, 496–504.PubMedCrossRefGoogle Scholar
  40. 40.
    Polgár, L., Kollát, E., and Hollósi, M. (1993) Prolyl oligopeptidase catalysis. Reactions with thiono substrates reveal substrate-induced conformational change to be the rate-limiting step. FEBS Lett. 322, 227–230.PubMedCrossRefGoogle Scholar
  41. 41.
    Szeltner, Z., Rea, D., Renner, V., Fülöp, V., and Polgár, L. (2002) Electrostatic effects and binding determinants in the catalysis of prolyl oligopeptidase. Site-specific mutagenesis at the oxyanion binding site. J. Biol. Chem. 277, 42,613–42,622.Google Scholar
  42. 42.
    Cygler, M., Schrag, J. D., Sussman, J. L., et al. (1993) Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 2, 366–382.PubMedCrossRefGoogle Scholar
  43. 43.
    Halkides, C. J., Wu, Y. Q., and Murray, C. J. (1996). A low-barrier hydrogen bood in subtilisin: 1H and 15N NMR studies with peptidyl trifluoromethyl ketones. Biochemistry 35, 15,941–15,948.Google Scholar
  44. 44.
    Craik, C. S., Roczniak, S., Largman, C., and Rutter, W. J. (1987) The catalytic role of the active site aspartic acid in serine proteases. Science 237, 909–913.PubMedCrossRefGoogle Scholar
  45. 45.
    Sprang, S., Standing, T., Fletterick, R. J., et al. (1987) The three-dimensional structure of Asn102 mutant of trypsin: role of Asp102 in serine protease catalysis. Science 237, 905–909.PubMedCrossRefGoogle Scholar
  46. 46.
    Szeltner, Z., Rea, D., Juhasz, T., et al. (2002) Substrate-dependent competency of the catalytic triad of prolyl oligopeptidase. J. Biol. Chem. 277, 44,597–44,605.Google Scholar
  47. 47.
    Fersht, A. R. (1987) Structure and Mechanism in Protein Sciences: A Guide to Enzyme Catalysis and Protein Folding, WH Freeman & Company, New York.Google Scholar
  48. 48.
    Liang, T. C. and Abeles, R. H. (1987) Complex of α-chymotrypsin and N-acetyl-L-leucyl-L-phenylalanyl trifluoromethyl ketone: structural studies with NMR spectroscopy. Biochemistry 26, 7603–7608.PubMedCrossRefGoogle Scholar
  49. 49.
    Matthews, D. A., Alden, R. A., Birktoft, J. J., Freer, S. T., and Kraut, J. (1975) X-ray crystallographic study of boronic acid adducts with subtilisin BPN′ (Novo). A model for the catalytic transition state. J. Biol. Chem. 250, 7120–7126.PubMedGoogle Scholar
  50. 50.
    Bryan, P., Pantoliano, M. W., Quill, S. G., Hsiao, H. Y., and Poulos, T. (1986) Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc. Natl. Acad. Sci. U.S.A. 83, 3743–3745.PubMedCrossRefGoogle Scholar
  51. 51.
    Braxton, S. and Wells, J. A. (1991) The importance of a distal hydrogen bonding group in stabilizing the transition state in subtilisin BPN′. J. Biol. Chem. 266, 11,797–11,800.Google Scholar
  52. 52.
    Engel, M., Hoffmann, T., Wagner, L., et al. (2003) The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc. Natl. Acad. Sci. U.S.A. 100, 5063–5068.PubMedCrossRefGoogle Scholar
  53. 53.
    Hiramatsu, H., Kyono, K., Higashiyama, Y., et al. (2003) The structure and function of human dipeptidyl peptidase IV, possessing a unique eight-bladed β-propeller fold. Biochem. Biophys. Res. Commun. 302, 849–854.PubMedCrossRefGoogle Scholar
  54. 54.
    Oefner, C., D’Arcy, A., Mac Sweeney, A., Pierau, S., Gardiner, R., and Dale, G. E. (2003) High-resolution structure of human apo dipeptidyl peptidase IV/CD26 and its complex with 1-[([2-[(5-iodopyridin-2-yl) amino]-ethyl]amino)-acetyl]-2-cyano-(S)-pyrrolidine. Acta Crystallogr. D 59, 1206–1212.PubMedCrossRefGoogle Scholar
  55. 55.
    Rasmussen, H. B., Branner, S., Wiberg, F. C., and Wagtmann, N. (2003) Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat. Struct. Biol. 10, 19–25.PubMedCrossRefGoogle Scholar
  56. 56.
    Thoma, R., Loffler, B., Stihle, M., Huber, W., Ruf, A., and Hennig, M. (2003) Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure 11, 947–959.PubMedCrossRefGoogle Scholar
  57. 57.
    Larsen, N. A., Turner, J. M., Stevens, J. et al. (2002) Crystal structure of a bacterial cocaine esterase. Nat. Struct. Biol. 9, 17–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Szeltner, Z., Renner, V., and Polgár, L. (2000) Substrate- and pH-dependent contribution of oxyanion binding site to the catalysis of prolyl oligopeptidase, a paradigm of the serine oligopeptidase family. Protein Sci. 9, 353–360.PubMedGoogle Scholar
  59. 59.
    Polgár, L. (1997) A potential processing enzyme in prokaryotes: oligopeptidase B, a new type of serine peptidase. Proteins 28, 375–379.PubMedCrossRefGoogle Scholar
  60. 60.
    Caler, E. V., Vaena de Avalos, S., Haynes, P. A., Andrews, N. W., and Burleigh, B. A. (1998) Oligopeptidase B-dependent signalling mediates host cell invasion by Trypanosoma cruzi. EMBO J. 17, 4975–4986.PubMedCrossRefGoogle Scholar
  61. 61.
    Caler, E. V., Morty, R. E., Burleigh, B. A., and Andrews, N. W. (2000) Dual role of signaling pathways leading to Ca2+ and cyclic AMP elevation in host cell invasion by Trypanosoma cruzi. Infect. Immun. 68, 6602–6610.PubMedCrossRefGoogle Scholar
  62. 62.
    Morty, R. E., Lonsdale-Eccles, J. D., Morehead, J., et al. (1999) Oligopeptidase B from Trypanosoma brucei, a new member of an emerging subgroup of serine oligopeptidases. J. Biol. Chem. 274, 26,149–26,156.CrossRefGoogle Scholar
  63. 63.
    Morty, R. E., Lonsdale-Eccles, J. D., Mentele, R., Auerswald, E. A., and Coetzer, T. H. (2001) Trypanosome-derived oligopeptidase B is released into the plasma of infected rodents, where it persists and retains full catalytic activity. Infect. Immun. 69, 2757–2761.PubMedCrossRefGoogle Scholar
  64. 64.
    Morty, R. E., Authie, E., Troeberg, L., Lonsdale-Eccles, J. D., and Coetzer, T. H. (1999) Purification and characterisation of a trypsin-like serine oligopeptidase from Trypanosoma congolense. Mol. Biochem. Parasitol. 102, 145–155.PubMedCrossRefGoogle Scholar
  65. 65.
    Morty, R. E., Pelle, R., Vadasz, I., Uzcanga, G. L., Seeger, W., and Bubis, J. (2005) Oligopeptidase B from Trypanosoma evansi: a parasite peptidase that inactivates atrial natriuretic factor in the bloodstream of infected hosts. J. Biol. Chem. 280, 10,925–10,937.CrossRefGoogle Scholar
  66. 66.
    Morty, R. E., Troeberg, L., Pike, R. N., et al. (1998) A trypanosome oligopeptidase as a target for the trypanocidal agents pentamidine, diminazene and suramin. FEBS Lett. 433, 251–256.PubMedCrossRefGoogle Scholar
  67. 67.
    Morty, R. E., Troeberg, L., Powers, J. C., Ono, S., Lonsdale-Eccles, J. D., and Coetzer, T. H. (2000) Characterisation of the antitrypanosomal activity of peptidyl alpha-aminoalkyl phosphonate diphenyl esters. Biochem. Pharmacol. 60, 1497–1504.PubMedCrossRefGoogle Scholar
  68. 68.
    Tsuji, A., Yuasa, K., and Matsuda, Y. (2004) Identification of oligopeptidase B in higher plants. Purification and characterization of oligopeptidase B from quiescent wheat embryo, Triticum aestivum. J. Biochem. 136, 673–681.PubMedCrossRefGoogle Scholar
  69. 69.
    Tsuru, D. and Yoshimoto, T. (1994) Oligopeptidase B: protease II from Escherichia coli. Methods Enzymol. 244, 201–215.PubMedGoogle Scholar
  70. 70.
    Barrett, A. J., Rawlings, N. D., and Woessner, J. F. (2004) Handbook of Proteolytic Enzymes, Academic Press, London.Google Scholar
  71. 71.
    Burleigh, B. A., Caler, E. V., Webster, P., and Andrews, N. W. (1997) A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signalling in mammalian cells. J. Cell. Biol. 136, 609–620.PubMedCrossRefGoogle Scholar
  72. 72.
    Gérczei, T., Keserü, G. M., and Náray-Szabó, G. (2000) Construction of a 3D model of oligopeptidase B, a potential processing enzyme in prokaryotes. J. Mol. Graph. Model. 18, 7–17.PubMedCrossRefGoogle Scholar
  73. 73.
    Morty, R. E., Fülöp, V., and Andrews N. W. (2002) Substrate recognition properties of oligopeptidase B from Salmonella enterica serovar Typhimurium. J. Bacteriol. 184, 3329–3337.PubMedCrossRefGoogle Scholar
  74. 74.
    Polgár, L. (1999) Oligopeptidase B: a new type of serine peptidase with a unique substrate-dependent temperature sensitivity. Biochemistry 38, 15,548–15,555.CrossRefGoogle Scholar
  75. 75.
    Hemerly, J. P., Oliveira, V., Del Nery, E., et al. (2003) Subsite specificity (S3, S2, S1′, S2′ and S3′) of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides: comparative study and identification of specific carboxypeptidase activity. Biochem. J. 373, 933–939.PubMedCrossRefGoogle Scholar
  76. 76.
    Yoshimoto, T., Tabira, J., Kabashima, T., Inoue, S., and Ito, K. (1995) Protease II from Moraxella lacunata: cloning, sequencing, and expression of the enzyme gene, and crystallization of the expressed enzyme. J. Biochem. 117, 654–660.PubMedGoogle Scholar
  77. 77.
    Elovson, J. (1980) Biogenesis of plasma membrane glycoproteins. Purification and properties of two rat liver plasma membrane glycoproteins. J. Biol. Chem. 255, 5807–5815.PubMedGoogle Scholar
  78. 78.
    Durinx, C., Lambeir, A. M., Bosmans, E., et al. (2000) Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur. J. Biochem. 267, 5608–5613.PubMedCrossRefGoogle Scholar
  79. 79.
    Aertgeerts, K., Ye, S., Shi, L., et al. (2004) N-linked glycosylation of dipeptidyl peptidase IV (CD26): effects on enzyme activity, homodimer formation, and adenosine deaminase binding. Protein Sci. 13, 145–154.PubMedCrossRefGoogle Scholar
  80. 80.
    Tiruppathi, C., Ganapathy, V., and Leibach, F. H. (1990) Evidence for tripeptide-proton symport in renal brush border membrane vesicles. Studies in a novel rat strain with a genetic absence of dipeptidyl peptidase IV. J. Biol. Chem. 265, 2048–2053.PubMedGoogle Scholar
  81. 81.
    Suzuki, Y., Erickson, R. H., Sedlmayer, A., Chang, S. K., Ikehara, Y., and Kim, Y. S. (1993) Dietary regulation of rat intestinal angiotensin-converting enzyme and dipeptidyl peptidase IV. Am. J. Physiol. 264, 1153–1159.Google Scholar
  82. 82.
    Drucker, D. J. (2001) Minireview: the glucagon-like peptides. Endocrinology 142, 521–527.PubMedCrossRefGoogle Scholar
  83. 83.
    Ansorge, S., Buhling, F., Kahne, T., et al. (1997) CD26/dipeptidyl peptidase IV in lymphocyte growth regulation. Adv. Exp. Med. Biol. 421, 127–140.PubMedGoogle Scholar
  84. 84.
    Kahne, T., Lendeckel, U., Wrenger, S., Neubert, K., Ansorge, S., and Reinhold, D. (1999) Dipeptidyl peptidase IV: a cell surface peptidase involved in regulating T cell growth (review). Int. J. Mol. Med. 4, 3–15.PubMedGoogle Scholar
  85. 85.
    Ludwig, A., Schiemann, F., Mentlein, R., Lindner, B., and Brandt, E. (2002) Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine. J. Leukoc. Biol. 72, 183–191.PubMedGoogle Scholar
  86. 86.
    Ludwig, K., Fan, H., Dobers, J., Berger, M., Reutter, W., and Bottcher, C. (2004) 3D structure of the CD26-ADA complex obtained by cryo-EM and single particle analysis. Biochem. Biophys. Res. Commun. 313, 223–229.PubMedCrossRefGoogle Scholar
  87. 87.
    Cheng, H. C., Abdel-Ghany, M., and Pauli, B. U. (2003) A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. J. Biol. Chem. 278, 24,600–24,607.Google Scholar
  88. 88.
    Loster, K., Zeilinger, K., Schuppan, D., and Reutter, W. (1995) The cysteine-rich region of dipeptidyl peptidase IV (CD 26) is the collagen-binding site. Biochem. Biophys. Res. Commun. 217, 341–348.PubMedCrossRefGoogle Scholar
  89. 89.
    Blanco, J., Valenzuela, A., Herrera, C., Lluis, C., Hovanessian, A. G., and Franco, R. (2000) The HIV-1 gp120 inhibits the binding of adenosine deaminase to CD26 by a mechanism modulated by CD4 and CXCR4 expression. FEBS Lett. 477, 123–128.PubMedCrossRefGoogle Scholar
  90. 90.
    Herrera, C., Morimoto, C., Blanco, J., et al. (2001) Comodulation of CXCR4 and CD26 in human lymphocytes. J. Biol. Chem. 276, 19,532–19,539.CrossRefGoogle Scholar
  91. 91.
    Ishii, T., Ohnuma, K., Murakami, A., et al. (2001) CD26-mediated signalling for T cell activation occurs in lipid rafts through its association with CD45RO. Proc. Natl. Acad. Sci. U.S.A. 98, 12,138–12,143.Google Scholar
  92. 92.
    Busek, P., Malik, R., and Sedo, A. (2004) Dipeptidyl peptidase IV activity and/or structure homologues (DASH) and their substrates in cancer. Int. J. Biochem. Cell Biol. 36, 408–421.PubMedCrossRefGoogle Scholar
  93. 93.
    Kumagai, Y., Konishi, K., Gomi, T., Yagishita, H., Yajima, A., and Yoshikawa, M. (2000) Enzymatic properties of dipeptidyl aminopeptidase IV produced by the periodontal pathogen Porphyromonas gingivalis and its participation in virulence. Infect. Immun. 68, 716–724.PubMedCrossRefGoogle Scholar
  94. 94.
    Takahashi, N. and Sato, T. (2000) Preferential utilization of dipeptides by Porphyromonas gingivalis. J. Dent. Res. 80, 1425–1429.Google Scholar
  95. 95.
    Takahashi, N. and Sato, T. (2002) Dipeptide utilization by the periodontal pathogens Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens and Fusobacterium nucleatum. Oral Microbiol. Immunol. 17, 50–54.PubMedCrossRefGoogle Scholar
  96. 96.
    Yagishita, H., Kumagai, Y., Konishi, K., Takahashi, Y., Aoba, T., and Yoshikawa, M. (2001) Histopathological studies on virulence of dipeptidyl aminopeptidase IV (DPPIV) of Porphyromonas gingivalis in a mouse abscess model: use of a DPPIV-deficient mutant. Infect. Immun. 69, 7159–7161.PubMedCrossRefGoogle Scholar
  97. 97.
    Banbula, A., Bugno, M., Goldstein, J., et al. (2000) Emerging family of proline-specific peptidases of Porphyromonas gingivalis: purification and characterization of serine dipeptidyl peptidase, a structural and functional homologue of mammalin prolyl dipeptidyl peptidase IV. Infect. Immun. 68, 1176–1182.PubMedCrossRefGoogle Scholar
  98. 98.
    Lambeir, A. M., Rea, D., Fülöp, V., et al. (2003) Exploration of the active site of dipeptidyl peptidase IV from Porphyromonas gingivalis. Comparison with the human enzyme. Adv. Exp. Med. Biol. 524, 29–35.PubMedGoogle Scholar
  99. 99.
    Rea, D., Lambeir, A. M., Kumagai, Y., De Meester, I., Scharpé, S., and Fülöp, V. (2004) Expression, purification and preliminary crystallographic analysis of dipeptidyl peptidase IV from Porphyromonas gingivalis. Acta Crystallogr. D 60, 1871–1873.PubMedCrossRefGoogle Scholar
  100. 100.
    Aertgeerts, K., Ye, S., Tennant, M. G., et al. (2004) Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci. 13, 412–421.PubMedCrossRefGoogle Scholar
  101. 101.
    Brandstetter, H., Kim, J. S., Groll, M., and Huber, R. (2001) Crystal structure of the tricorn protease reveals a protein disassembly line. Nature 414, 466–470.PubMedCrossRefGoogle Scholar
  102. 102.
    Kim, J. S., Groll, M., Musiol, H. J., et al. (2002) Navigation inside a protease: substrate selection and product exit in the tricorn protease from Thermoplasma acidophilum. J. Mol. Biol. 324, 1041–1050.PubMedCrossRefGoogle Scholar
  103. 103.
    Abbott, C. A., McCaughan, G. W., and Gorrell, M. D. (1999) Two highly conserved glutamic acid residues in the predicted β-propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Lett. 458, 278–284.PubMedCrossRefGoogle Scholar
  104. 104.
    Bjelke, J. R., Christensen, J., Branner, S., et al. (2004) Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV. J. Biol. Chem. 279, 34,691–34,697.CrossRefGoogle Scholar
  105. 105.
    Hanski, C., Huhle, T., Gossrau, R., and Reutter, W. (1998) Direct evidence for the binding of rat liver DPP IV to collagen in vitro. Exp. Cell. Res. 178, 64–72.CrossRefGoogle Scholar
  106. 106.
    Gorrell, M. D., Gysbers, V., and McCaughan, G. W. (2001) CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand. J. Immunol. 54, 249–264.PubMedCrossRefGoogle Scholar
  107. 107.
    Von Bonin, A., Huhn, J., and Fleischer, B. (1998) Dipeptidyl-peptidase IV/CD26 on T cells: analysis of an alternative T-cell activation pathway. Immunol. Rev. 161, 43–53.CrossRefGoogle Scholar
  108. 108.
    Kameoka, J., Tanaka, T., Nojima, Y., Schlossman, S. F., and Morimoto, C. (1993) Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 261, 466–469.PubMedCrossRefGoogle Scholar
  109. 109.
    Schrader, W. P., West, C. A., Miczek, A. D., and Norton, E. K. (1990) Characterization of the adenosine deaminase-adenosine deaminase complexing protein binding reaction. J. Biol. Chem. 265, 19,312–19,318.Google Scholar
  110. 110.
    Weihofen, W. A., Liu, J., Reutter, W., Saenger, W., and Fan, H. (2004) Crystal structure of CD26/dipeptidyl-peptidase IV in complex with adenosine deaminase reveals a highly amphiphilic interface. J. Biol. Chem. 279, 43,330–43,335.CrossRefGoogle Scholar
  111. 111.
    De Meester, I., Vanham, G., Kestens, L., et al. (1994) Binding of adenosine deaminase to the lymphocyte surface via CD26. Eur. J. Immunol. 24, 566–570.PubMedCrossRefGoogle Scholar
  112. 112.
    Gines, S., Marin, M., Mallol, J., et al. (2002) Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction. Biochem. J. 361, 203–209.PubMedCrossRefGoogle Scholar
  113. 113.
    Strop, P., Bankovich, A. J., Hansen, K. C., Garcia, K. C., and Brünger, A. T. (2004) Structure of a human A-type potassium channel interacting protein DPPX, a member of the dipeptidyl aminopeptidase family. J. Mol. Biol. 343, 1055–1065.PubMedCrossRefGoogle Scholar
  114. 114.
    Nadal, M. S., Ozaita, A., Amarillo, Y., et al. (2003). The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37, 449–461.PubMedCrossRefGoogle Scholar
  115. 115.
    Jerng, H. H., Qian, Y., and Pfaffinger, P. J. (2004) Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophys. J. 87, 2380–2396.PubMedCrossRefGoogle Scholar
  116. 116.
    Jones, W. M., Scaloni, A., and Manning, J. M. (1994) Acylaminoacyl-peptidase. Methods Enzymol. 244, 227–231.PubMedCrossRefGoogle Scholar
  117. 117.
    Jones, W. M., Manning, L. R., and Manning, J. M. (1986) Enzymic cleavage of the blocked amino terminal residues of peptides. Biochem. Biophys. Res. Commun. 139, 244–250.PubMedCrossRefGoogle Scholar
  118. 118.
    Jones, W. M., Scaloni, A., Bossa, F., Popowicz, A. M., Schneewind, O., and Manning, J. M. (1991) Genetic relationship between acylpeptide hydrolase and acylase, two hydrolytic enzymes with similar binding but different catalytic specificities. Proc. Natl. Acad. Sci. U.S.A. 88, 2194–2198.PubMedCrossRefGoogle Scholar
  119. 119.
    Farries, T. C., Harris, A., Auffret, A. D., and Aitken, A. (1991) Removal of N-acetyl groups from blocked peptides with acylpeptide hydrolase. Stabilization of the enzyme and its application to protein sequencing. Eur. J. Biochem. 196, 679–685.PubMedCrossRefGoogle Scholar
  120. 120.
    Naylor, S. L., Marshall, A., Hensel, C., Martinez, P. F., Holley, B., and Sakaguchi A. Y. (1989) The DNF15S2 locus at 3p21 is transcribed in normal lung small cell lung cancer. Genomics 4, 355–361.PubMedCrossRefGoogle Scholar
  121. 121.
    Erlandsson, R., Boldog, F., Persson, B., et al. (1991) The gene from the short arm of chromosome 3, at D3F15S2, frequently deleted in renal cell carcinoma, encodes acylpeptide hydrolase. Oncogene 6, 1293–1295.PubMedGoogle Scholar
  122. 122.
    Scaloni A., Jones, W. M., Pospischil, M., et al. (1992) Deficiency of acylpeptide hydrolase in small-cell lung carcinoma cell lines. J. Lab. Clin. Med. 120, 546–552.PubMedGoogle Scholar
  123. 123.
    Duysen, E. G., Li, B., Xie, W., et al. (2001) Evidence for nonacetylcholinesterase targets of organophosphorus nerve agent: supersensitivity of acetylcholinesterase knockout mouse to VX lethality. J. Pharmacol. Exp. Ther. 299, 528–535.PubMedGoogle Scholar
  124. 124.
    Richards, P. G., Johnson, M. K., and Ray, D. E. (2000) Identification of acylpeptide hydrolase as a sensitive site for reaction with organophosphorus compounds and a potential target for cognitive enhancing drugs. Mol. Pharmacol. 58, 577–583.PubMedGoogle Scholar
  125. 125.
    Mitta, M., Miyagi, M., Kato, I., and Tsunasawa, S. (1998) Identification of the catalytic triad residues of porcine liver acylamino acid-releasing enzyme. J. Biochem. 123, 924–931.PubMedGoogle Scholar
  126. 126.
    Raphel, V., Giardina, T., Guevel, L., et al. (1999) Cloning, sequencing and further characterization of acylpeptide hydrolase from porcine intestinal mucosa. Biochim. Biophys. Acta 1432, 371–381.PubMedGoogle Scholar
  127. 127.
    Kiss, A. L., Szeltner, Z., Fülöp, V., and Polgár, L. (2004). His507 of acylaminoacyl peptidase stabilizes the active site conformation, not the catalytic intermediate. FEBS Lett. 571, 17–20.PubMedCrossRefGoogle Scholar
  128. 128.
    Feese, M., Scaloni, A., Jones, W. M., Manning, J. M., and Remington, S. J. (1993) Crystallization and preliminary X-ray studies of human erythrocyte acylpeptide hydrolase. J. Mol. Biol. 233, 546–549.PubMedCrossRefGoogle Scholar
  129. 129.
    Durand, A., Villard, C., Giardina, T., Perrier, J., Juge, N., and Puigserver, A. (2003) Structural properties of porcine intestine acylpeptide hydrolase. J. Protein Chem. 22, 183–191.PubMedCrossRefGoogle Scholar
  130. 130.
    Wang, G., Gao, R., Ding, Y., et al. (2002) Crystallization and preliminary crystallographic analysis of acylamino-acid releasing enzyme from the hyperthermophilic archaeon Aeropyrum pernix. Acta Crystallogr. D 58, 1054–1055.PubMedCrossRefGoogle Scholar
  131. 131.
    Bartlam, M., Wang, G., Yang, H., et al. (2004) Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1. Structure 12, 1481–1488.PubMedCrossRefGoogle Scholar
  132. 132.
    Laing, W. A. and Christeller, J. T. (1997) A plant chloroplast glutamyl proteinase. Plant Physiol. 114, 715–722.PubMedGoogle Scholar
  133. 133.
    Yamauchi, Y., Ejiri, Y., Sugimoto, T., Sueyoshi, K., Oji, Y., and Tanaka, K. (2001) A high molecular weight glutamyl endopeptidase and its endogenous inhibitors from cucumber leaves. J. Biochem. 130, 257–261.PubMedGoogle Scholar
  134. 134.
    Esnouf, R. M. (1997) An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 133–138.Google Scholar
  135. 135.
    Kraulis, P. J. (1991) MolScript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950.CrossRefGoogle Scholar
  136. 136.
    Merritt, E. A. and Murphy, M. E. P. (1994) Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations