Cell Biochemistry and Biophysics

, Volume 44, Issue 3, pp 336–341 | Cite as

Expression and purification of rotavirus proteins NSP5 and NSP6 in Escherichia coli

  • M. Samaniego-Hernández
  • A. De León-Rodriguez
  • R. Aparicio-Fabre
  • C. Arias-Ortiz
  • A. P. Barba de la Rosa
Original Article

Abstract

Rotaviruses are one of the worldwide leading causes of gastroenteritis in children under 5 yr old. The rotavirus nonstructural NSP5 is a phosphoprotein implicated in viroplasms formation, whereas NSP6 could have a possible regulatory role of NSP5. It has been reported that N- and C-termini of NSP5 are important for amount of protein is required for structural analysis, efficient expression systems are required. His-tag fusion at the C-terminus and glutathione-S-transferase (GST)-fusion at the N-terminus were used as expression systems, and conditions for recombinant proteins expression were obtained. His-tag fusion was not efficient to produce NSP5 (2% of total protein), but NSP6 was expressed in higher amounts (11% of total protein). In contrast, GST-NSP5 and GST-NSP6 proteins correspond to 34 and 31% of the total proteins, respectively. GST-fusions seem to have a protective effect against nonstructural rotavirus protein toxicity in Escherichia coli; however, in both systems, NSP5 and NSP6 recombinant proteins were expressed as inclusion bodies. Conditions for solubilization and purification of recombinant proteins were achieved. This is the first report of expression and purification of NSP5 and NSP6 recombinant proteins in suitable amounts for further structural analysis.

Index Entries

Rotavirus NSP5 NSP6 expression inclusion bodies purification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shaw, A. L., Rothnagel, R., Chen, D., Ramig, R. F., Chiu, W., and Prasad, B. V. V. (1993) Three-dimensional visualization of the rotavirus hemagglutinin structure. Cell 74, 693–701.PubMedCrossRefGoogle Scholar
  2. 2.
    Parashar, U. D., Hummelman, E. G., Breese, J. S., Miller, M. A., and Glass, R. I. (2003) Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 5, 565–572.Google Scholar
  3. 3.
    Vende, P., Taraporewala, Z. F., and Patton, J. T. (2002) RNA-binding activity of the rotavirus phosphoprotein NSP5 includes affinity for double-stranded RNA. J. Virol. 76, 5291–5299.PubMedCrossRefGoogle Scholar
  4. 4.
    Eichwald, C., Rodriguez, J. F., and Burrone, O. R. (2004) Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation. J. Gen. Virol. 85, 625–634.PubMedCrossRefGoogle Scholar
  5. 5.
    Torres-Vega, M. A., Gonzalez, R. A., Duarte, M., Poncet, D., Lopez, S., and Arias, C. F. (2000) The C-terminal domain of rotavirus NSP5 is essential for its multimerization, hyperphosphorylation and interaction with NSP6. J. Gen. Virol. 81, 821–830.PubMedGoogle Scholar
  6. 6.
    Krishna-Mohan, K. V. and Atreya, C. D. (2001) Nucleotide sequence analysis of rotavirus gene 11 from two tissue culture-adapted ATCC strains, RRV and Wa. Virus Genes 23, 321–329.CrossRefGoogle Scholar
  7. 7.
    Dong, Y., Zeng, C. Q.-Y., Ball, J. M., Estes, M. K., and Morris, A. P. (1997) The rotavirus enterotoxin NSP4 mobilizes intracellular calcium in human intestinal cells by stimulating phospholipase C-mediated inositol 1,4,5-trisphosphate production. Proc. Natl. Acad. Sci U.S.A. 94, 3960–3965.PubMedCrossRefGoogle Scholar
  8. 8.
    Rodríguez-Díaz, J., López-Andújar, P., García-Díaz, A., Cuenca, J., Montava, R., and Buesa, J. (2003). Expression and purification of polyhistidine-tagged rotavirus NSP4 proteins in insect cells. Protein Expr. Purif. 31, 207–212.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang, M., Zeng, C. Q.-Y., Morris, A. P., and Estes, M. K. (2000). A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells. J. Virol. 74, 11,663–11,670.Google Scholar
  10. 10.
    O’Brien, J., Taylor, J. A., and Bellamy, A. R. (2000) Probing the structure of rotavirus NSP4: a short sequence at the extreme c terminus mediates binding to the inner capsid particle. J. Virol. 74, 5388–5394.PubMedCrossRefGoogle Scholar
  11. 11.
    Afrikanova, I., Fabbretti, E., Miozzo, M. C., and Burrone, O. R. (1998). Rotavirus NSP5 phosphorylation is up-regulated by interaction with NSP2. J. Gen. Virol. 79, 1679–2686.Google Scholar
  12. 12.
    Blackhall, J., Fuentes, A., Hansen, K., and Magnusson G. (1997) Serine protein kinase activity associated with rotavirus phosphoprotein NSP5. J. Virol. 71, 138–144.PubMedGoogle Scholar
  13. 13.
    Chnaiderman, J., Barro, M., and Spencer, E. (2002) NSP5 phosphorylation regulates the fate of viral mRNA in rotavirus infected cells. Arch. Virol. 147, 1899–1911.PubMedCrossRefGoogle Scholar
  14. 14.
    Poncet, D., Lindenbaum, P., L’Haridon, R., and Cohen, J. (1997) In vivo and In vitro phosphorylation of rotavirus NSP5 correlates with its localization in viroplasms. J. Virol. 71, 34–41.PubMedGoogle Scholar
  15. 15.
    Fabbretti, E., Afrikanova, I., Vascotto, F., and Burrone, O. R. (1999) Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo. J. Gen. Virol. 80, 333–339.PubMedGoogle Scholar
  16. 16.
    Mohan, K. V. K., Muller, J., and Atreya, C. D. (2003) The N-and C-terminal regions of rotavirus NSP5 are the critical determinants for the formation of viroplasm-like structures independent of NSP2. J. Virol. 77, 12,184–12,192.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • M. Samaniego-Hernández
    • 1
  • A. De León-Rodriguez
    • 1
  • R. Aparicio-Fabre
    • 1
  • C. Arias-Ortiz
    • 2
  • A. P. Barba de la Rosa
    • 1
  1. 1.Depto Biología MolecularInstituto Potosino de Investigación Científica y TecnológicaSan Luis PotosíMéxico
  2. 2.Depto Genética y Fisiología MolecularInstituto de Biotecnología-UNAMCuernavacaMéxico

Personalised recommendations