Cell Biochemistry and Biophysics

, Volume 44, Issue 1, pp 139–146 | Cite as

Role of extracellular matrix and its regulators in human airway smooth muscle biology

  • Krishnan Parameswaran
  • Anna Willems-Widyastuti
  • Vijay K. T. Alagappan
  • Katherine Radford
  • Andor R. Kranenburg
  • Hari S. Sharma
Review

Abstract

Altered extracellular matrix (ECM) deposition contributing to airway wall remodeling is an important feature of asthma and chronic obstructive pulmonary disease (COPD). The molecular mechanisms of this process are poorly understood. One of the key pathological features of these diseases is thickening of airway walls. This thickening is largely to the result of airway smooth muscle (ASM) cell hyperplasia and hypertrophy as well as increased deposition of ECM proteins such as collagens, elastin, laminin, and proteoglycans around the smooth muscle. Many growth factors and cytokines, including fibroblast growth factor (FGF)-1, FGF-2, and transforming growth factor (TGF)-α1, that are released from the airway wall have the potential to contribute to airway remodeling, revealed by enhanced ASM proliferation and increased ECM protein deposition. TGF-α1 and FGF-1 stimulate mRNA expression of collagen I and III in ASM cells, suggesting their role in the deposition of extracellular matrix proteins by ASM cells in the airways of patients with chronic lung diseases. Focus is now on the bidirectional relationship between ASM cells and the ECM. In addition to increased synthesis of ECM proteins, ASM cells can be involved in downregulation of matrix metalloproteinases (MMPs) and upregulation of tissue inhibitors of metalloproteinases (TIMPs), thus eventually contributing to the alteration in ECM. In turn, ECM proteins promote the survival, proliferation, cytokine synthesis, migration, and contraction of human airway smooth muscle cells. Thus, the intertwined relationship of ASM and ECM and their response to stimuli such as chronic inflammation in diseases such as asthma and COPD contribute to the remodeling seen in airways of patients with these diseases.

Index Entries

Airway smooth muscle extracellular matrix cytokine growth factor airway remodeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Black, J. and Page, C. (1994) Airways and vascular remodelling in asthma and cardiovascular disease: implications for therapeutic intervention. Eur. Respir. J. 7, 622–623.PubMedCrossRefGoogle Scholar
  2. 2.
    Jeffery, P. K. (2001) Remodeling in asthma and chronic obstructive lung disease. Am. J. Respir. Crit. Care Med. 164, S28-S38.PubMedGoogle Scholar
  3. 3.
    Lambert, R. K. (1991) Role of bronchial basement membrane in airway collapse. J. Appl. Physiol. 71, 666–673.PubMedGoogle Scholar
  4. 4.
    Roche, W. R., Beasley, R., Williams, J. H., and Holgate, S. T. (1989) Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1, 520–524.PubMedCrossRefGoogle Scholar
  5. 5.
    Laitinen, A., Altraja, A., Kampe, M., Linden, M., Virtanen, I., and Laitinen, L. A. (1997) Tenascin is increased in airway basement membrane of asthmatics and decreased by an inhaled steroid. Am. J. Respir. Crit. Care Med. 156, 951–958.PubMedGoogle Scholar
  6. 6.
    Roberts, C. R. and Burke, A. K. (1998) Remodelling of the extracellular matrix in asthma: proteoglycan synthesis and degradation. Can. Respir. J. 5, 48–50.PubMedGoogle Scholar
  7. 7.
    Johnson, P. R., Black, J. L., Carlin, S., Ge, Q., and Underwood, P. A. (2000) The production of extracellular matrix proteins by human passively sensitized airway smooth-muscle cells in culture: the effect of beclomethasone. Am. J. Respir. Crit. Care Med. 162, 2145–2151.PubMedGoogle Scholar
  8. 8.
    Elshaw, S. R., Henderson, N., Knox, A. J., Watson, S. A., Buttle, D. J., and Johnson, S. R. (2004) Matrix metalloproteinase expression and activity in human airway smooth muscle cells. Br. J. Pharmacol. 142, 1318–1324.PubMedCrossRefGoogle Scholar
  9. 9.
    McKay, S., de Jongste, J. C., Saxena, P. R., and Sharma, H. S. (1998) Angiotensin II induces hypertrophy of human airway smooth muscle cells: expression of transcription factors and transforming growth factor-α1 Am. J. Respir. Cell Mol. Biol. 18, 823–833.PubMedGoogle Scholar
  10. 10.
    Burgess, J. K., Johnson, P. R., et al. (2003) Expression of connective tissue growth factor in asthmatic airway smooth muscle cells. Am. J. Respir. Crit. Care Med. 167, 71–77.PubMedCrossRefGoogle Scholar
  11. 11.
    Giancotti, F. G. and Ruoslahti, E. (1999) Integrin signaling. Science 285, 1028–1032.PubMedCrossRefGoogle Scholar
  12. 12.
    Aplin, A. E., Howe, A., Alahari, S. K., and Juliano, R. L. (1998) Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 50, 197–263.PubMedGoogle Scholar
  13. 13.
    Giancotti, F. G. (2000) Complexity and specificity of integrin signalling. Nat. Cell Biol. 2, E13-E14.PubMedCrossRefGoogle Scholar
  14. 14.
    Belkin, A. M. and Stepp, M. A. (2000) Integrins as receptors for laminins. Microsc. Res. Tech. 51, 280–301.PubMedCrossRefGoogle Scholar
  15. 15.
    Spofford, C. M., and Chilian, W. M. (2001) The elastinlaminin receptor functions as a mechanotransducer in vascular smooth muscle. Am. J. Physiol. 280, H1354-H1360.Google Scholar
  16. 16.
    Kranenburg, A. R., Willems-Widyastuti, A., Saxena, P. R., Sterk, P. J., de Boer, W. I., and Sharma, H. S. (2002) Enhanced pulmonary expression of extracellular matrix proteins in central airways of COPD patients. Am. J. Respir. Crit. Care Med. 165, A600.Google Scholar
  17. 17.
    Howarth, P. H., Knox, A. J., Amrani Y., et al. (2004) Synthetic responses in airway smooth muscle. J. Allergy Clin. Immunol. 114, S32-S50.PubMedCrossRefGoogle Scholar
  18. 18.
    Black, J. L., Burgess, J. K., and Johnson, P. R. (2003) Airway smooth muscle—its relationship to the extracellular matrix. Respir. Physiol. Neurobiol. 137, 339–346.PubMedCrossRefGoogle Scholar
  19. 19.
    Panettieri, R. A., Tan, E. M., Ciocca, V., Luttmann, M. A., Leonard, T. B., and Hay, D. W. (1998) Effects of LTD4 on human airway smooth muscle cell proliferation, matrix expression, and contraction in vitro: differential sensitivity to cysteinyl leukotriene receptor antagonists. Am. J. Respir. Cell Mol. Biol. 19, 453–461.PubMedGoogle Scholar
  20. 20.
    Billings, P. C., Herrick, D. J., Howard, P. S., Kucich, U., Engelsberg, B. N., and Rosenbloom, J. (2000) Expression of βIG-h3 by human bronchial smooth muscle cells: localization To the extracellular matrix and nucleus. Am. J. Respir. Cell Mol. Biol. 22, 352–359.PubMedGoogle Scholar
  21. 21.
    Black, P. N., Young, P. G., and Skinner, S. J. (1996) Response of airway smooth muscle cells to TGF-α1 effects on growth and synthesis of glycosaminoglycans. Am. J. Physiol. 271, L910-L917.PubMedGoogle Scholar
  22. 22.
    Foda, H. D., George, S., Rollo, E., et al. (1999) Regulation of gelatinases in human airway smooth muscle cells: mechanism of progelatinase A activation. Am. J. Physiol. 277, L174-L182.PubMedGoogle Scholar
  23. 23.
    Johnson, S. and Knox, A. (1999) Autocrine production of matrix metalloproteinase-2 is required for human airway smooth muscle proliferation. Am. J. Physiol. 277, L1109-L1117.PubMedGoogle Scholar
  24. 24.
    Imai, K., Hiramatsu, A., Fukushima, D., Pierschbacher, M.D., and Okada, Y. (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-α1 release. Biochem. J. 322, 809–814.PubMedGoogle Scholar
  25. 25.
    Coutts, A., Chen, G., Stephens, N., et al. (2001) Release of biologically active TGF-α1 from airway smooth muscle cells induces autocrine synthesis of collagen. Am. J. Physiol. 280, L999-L1008.Google Scholar
  26. 26.
    Khalil, N., Corne, S., Whitman, C., and Yacyshyn, H. (1996) Plasmin regulates the activation of cell-associated latent TGF-α1 secreted by rat alveolar macrophages after in vivo bleomycin injury. Am. J. Respir. Cell Mol. Biol. 15, 252–259.PubMedGoogle Scholar
  27. 27.
    Khalil, N., O'Connor, R. N., Flanders, K. C., and Unruh, H. (1996) TGF-α1 but not TGF-α2 or TGF-α3 is differentially present in epithelial cells of advanced pulmonary fibrosis: an immunohistochemical study. Am. J. Respir. Cell Mol. Biol. 14, 131–138.PubMedGoogle Scholar
  28. 28.
    Johnson, P. R. (2001) Role of human airway smooth muscle in altered extracellular matrix production in asthma. Clin. Exp. Pharmacol. Physiol. 28, 233–236.PubMedCrossRefGoogle Scholar
  29. 29.
    Kranenburg, A. R., Willems-Widyastuti, A., Saxena, P. R., Sterk, P. J., de Boer, W. I., and Sharma, H. S. (2003) Fibroblast growth factors differentially induce mRNA expression of collagens and fibronectin and secretion of transforming growth factor-b1 in cultured human airway smooth muscle cells. Am. J. Respir. Crit. Care Med. 167, A690.CrossRefGoogle Scholar
  30. 30.
    Pickering, J. G., Ford, C. M., Tang, B., and Chow, L. H. (1997) Coordinated effects of fibroblast growth factor-2 on expression of fibrillar collagens, matrix metalloproteinases, and tissue inhibitors of matrix metalloproteinases by human vascular smooth muscle cells. Evidence for repressed collagen production and activated degradative capacity. Arterioscler. Thromb. Vasc. Biol. 17, 475–482.PubMedGoogle Scholar
  31. 31.
    Kranenburg, A. R., De Boer, W. I., Van Krieken, J. H., et al. (2002) Enhanced expression of fibroblast growth factors and receptor FGFR-1 during vascular remodeling in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 27, 517–525.PubMedGoogle Scholar
  32. 32.
    Freyer, A. M., Johnson, S. R., and Hall, I. P. (2001) Effects of growth factors and extracellular matrix on survival of human airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 25, 569–576.PubMedGoogle Scholar
  33. 33.
    Hirst, S. J., Twort, C. H., and Lee, T. H. (2000) Differential effects of extracellular matrix proteins on human airway smooth muscle cell proliferation and phenotype. Am. J. Respir. Cell Mol. Biol. 23, 335–344.PubMedGoogle Scholar
  34. 34.
    Bonacci, J. V., Harris, T., Wilson, J. W., and Stewart, A. G. (2003) Collagen-induced resistance to glucocorticoid antimitogenic actions: a potential explanation of smooth muscle hyperplasia in the asthmatic remodelled airway. Br. J. Pharmacol. 138, 1203–1206.PubMedCrossRefGoogle Scholar
  35. 35.
    Freyer, A. M., Billington, C. K., Penn, R. B., and Hall, I. P. (2004) Extracellular matrix modulates \eta²-adrenergic receptor signaling in human airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 31, 440–445.PubMedCrossRefGoogle Scholar
  36. 36.
    Ghaffar, O., Hamid, Q., Renzi, P. M., et al. (1999) Constitutive and cytokine-stimulated expression of eotaxin by human airway smooth muscle cells. Am. J. Respir. Crit. Care Med. 159, 1933–1942.PubMedGoogle Scholar
  37. 37.
    Ying, S., Meng, Q., Zeibecoglou, K., et al. (1999) Eosinophil chemotactic chemokines (eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4), and C−C chemokine receptor 3 expression in bronchial biopsies from atopic and nonatopic (Intrinsic) asthmatics. J. Immunol. 163, 6321–6329.PubMedGoogle Scholar
  38. 38.
    Chung, K. F., Patel, H. J., Fadlon, E. J., et al. (1999) Induction of eotaxin expression and release from human airway smooth muscle cells by IL-α1 and TNF-α effects of IL-10 and corticosteroids. Br. J. Pharmacol. 127, 1145–1150.PubMedCrossRefGoogle Scholar
  39. 39.
    Moore, P. E., Church, T. L., Chism, D. D., Panettieri, R. A., Jr., and Shore, S. A. (2002) IL-13 and IL-4 cause eotaxin release in human airway smooth muscle cells: a role for ERK. Am. J. Physiol. 282, L847-L853.Google Scholar
  40. 40.
    Peng, Q., Lai, D., Nguyen, T. T., Chan, V., Matsuda, T., and Hirst, S. J. (2005) Multiple beta 1 integrins mediate enhancemant of human airway smooth muscle cytokine secretion by fibronectin and type I collagen. J. Immunol. 174, 2258–2264.PubMedGoogle Scholar
  41. 41.
    Ebina, M., Takahashi, T., Chiba, T., and Motomiya, M. (1993) Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A 3-D morphometric study. Am. Rev. Respir. Dis. 148, 720–726.PubMedGoogle Scholar
  42. 42.
    Parameswaran, K., Cox, G., Radford, K., Janssen, L. J., Sehmi, R., and O'Byrne, P. M. (2002) Cysteinyl leukotrienes promote human airway smooth muscle migration. Am. J. Respir. Crit. Care Med. 166, 738–742.PubMedCrossRefGoogle Scholar
  43. 43.
    Parameswaran, K., Radford, K., Zuo, J., Janssen, L. J., O'Byrne, P. M., and Cox, P. G. (2004) Extracellular matrix regulates human airway smooth muscle cell migration. Eur. Respir. J. 24, 545–551.PubMedCrossRefGoogle Scholar
  44. 44.
    Krymskaya, V. P., Goncharova, E. A., Ammit, A. J., et al. (2005) Src is necessary and sufficient for human airway smooth muscle cell proliferation and migration. FASEB J. 19, 428–430.PubMedGoogle Scholar
  45. 45.
    Schenk, S. and Quaranta, V. (2003) Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol. 13, 366–375.PubMedCrossRefGoogle Scholar
  46. 46.
    Chakir, J., Shannon, J., Molet, S., et al. (2003) Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. J. Allergy Clin. Immunol. 111, 1293–1298.PubMedCrossRefGoogle Scholar
  47. 47.
    Ward, J. E., Gould, H., Harris, T., Bonacci, J. V., and Stewart, A. G. (2004) PPAR gamma ligands, 15-deoxy-delta12,14-protaglandin J2 and rosiglitazone regulate human cultured airway smooth muscle proliferation through different mechanisms. Br. J. Pharmacol. 141, 517–525.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Krishnan Parameswaran
    • 1
  • Anna Willems-Widyastuti
    • 2
  • Vijay K. T. Alagappan
    • 2
  • Katherine Radford
    • 1
  • Andor R. Kranenburg
    • 2
  • Hari S. Sharma
    • 2
  1. 1.Firestone Institute for Respiratory HealthMcMaster University and St. Joseph's HealthcareHamiltonCanada
  2. 2.Cardiopulmonary and Molecular Biology Lab, Department of Pharmacology, Erasmus MCUniversity Medical CentreRotterdamThe Netherlands

Personalised recommendations