Cell Biochemistry and Biophysics

, Volume 43, Issue 3, pp 451–461 | Cite as

Mitogen-activated protein kinases in cell-cycle control

Review Article


The mitogen-activated protein kinase (MAPK) family of kinases connects extracellular stimuli with diverse cellular responses ranging from activation or suppression of gene expression to the regulation of cell mortality, growth, and differentiation. The MAPK family has been studied extensively; however, the role of these kinases in cell growth and cell-cycle control has become increasingly complex. Patterns have begun to emerge from these studies that show the functions of MAPK subfamilies at different stages of the cell cycle. Their patterns of subcellular localization and movement during the cell cycle are subfamily-specific and have raised many questions about possible cell-cycle functions that have yet to be demonstrated. This article will compare and contrast our current understanding of the functions and localization patterns of the MAPK subfamilies (ERK, BMK, p38, and JNK) in cell-cycle control.

Index Entries

Signal transduction MAPK p38 ERK JNK cell cycle protein kinase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kyriakis, J. M. and Avruch, J. (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81, 807–869.PubMedGoogle Scholar
  2. 2.
    Morrison, D. K., and Davis, R. J. (2003) Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev. Cell Dev. Biol. 19, 91–118.PubMedGoogle Scholar
  3. 3.
    Cyert, M. S. (2001) Regulation of nuclear localization during signaling. J. Biol. Chem. 276, 20805–20808.PubMedGoogle Scholar
  4. 4.
    Lenormand, P., Brondello, J.-M., Brunet, A., and Pouyssgeur, J. (1998) Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J. Cell Biol. 142, 625–626.PubMedGoogle Scholar
  5. 5.
    Brunet, A., Roux, D., Lenormand, P., Dowd, S., Keyse, S., and Pouyssgeur, J. (1999) Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J. 18, 664–674.PubMedGoogle Scholar
  6. 6.
    Hilger, R. A., Scheulen, M. E., and Strumberg, D. (2002) The Ras-Raf-MEK-ERK Pathway in the treatment of cancer. Onkologie 25, 511–518.PubMedGoogle Scholar
  7. 7.
    Adjei, A. A. (2001) Blocking oncogenic ras signaling for cancer therapy. J. Natl. Cancer Inst. 93, 1062–1074.PubMedGoogle Scholar
  8. 8.
    Hunter, T. and Pines, J. (1994) Cyclins and cancer II: cyclin D and cdk inhibitors come of age. Cell 79, 572–582.Google Scholar
  9. 9.
    Ussar, S. and Voss, T. (2004) MEK1 and MEK2, different regulators of the G1/S transition. J. Biol. Chem. 279, 43861–43869.PubMedGoogle Scholar
  10. 10.
    Chuang, C. F., and Ng, S. Y. (1994) Functional divergence of the MAP kinase pathway. ERK1 and ERK2 activate specific transcription factors. FEBS Lett. 346, 229–234.PubMedGoogle Scholar
  11. 11.
    Roovers, K. and Assoian, R. K. (2000) Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays 22, 818–826.PubMedGoogle Scholar
  12. 12.
    Woo, R. A., and Poon, R. Y. (2003) Cyclin-dependent kinases and S phase control in mammalian cells. Cell Cycle 2, 316–324.PubMedGoogle Scholar
  13. 13.
    Evans, D. R., and Guy, H. I. (2004) Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J. Biol. Chem. 279, 33035–33038.PubMedGoogle Scholar
  14. 14.
    Deak, M., Clifton, A. D., Lucocq, J., and Alessi, D. R. (1998) Mitogen- and stress- activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK/p38, and may mediate activation of CREB. EMBO J. 17, 4426–4441.PubMedGoogle Scholar
  15. 15.
    Prigent, C., and Dimitrov, S. (2003) Phosphorylation of serine 10 in histone H3, what for. J. Cell Sci. 116, 3677–3685.PubMedGoogle Scholar
  16. 16.
    Liu, X., Yan, S., Zhou, T., Terada, Y., and Erikson, R. L. (2004) The MAP kinase pathway is required for entry into mitosis and cell survival. Oncogene 23, 763–776.PubMedGoogle Scholar
  17. 17.
    Shapiro, P. S., Vaisberg, E., Hunt, A. J., Tolwinski, N. S., Whalen, A. M., McIntosh, J. R., and Ahn, N. G. (1998) Activation of the MKK/ERK pathway during somatic cell mitosis: direct interactions of active ERK with kinetochores and regulation of the mitotic 3F3/2 phosphoantigen. J. Cell Biol. 142, 1533–1545.PubMedGoogle Scholar
  18. 18.
    Willard, F. S. and Crouch, M. F. (2001) MEK, ERK, and p90RSK are present on mitotic tubulin in Swiss 3T3 cells: a role for the MAP kinase pathway in regulating mitotic exit. Cell Signal. 13, 653–664.PubMedGoogle Scholar
  19. 19.
    Zecevic, M., Catling, A. D., Eblen, S. T., et al. (1998) Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J. Cell Biol. 142, 1547–1558.PubMedGoogle Scholar
  20. 20.
    Gachet, Y., Tournier, S., Millar, J. B., and Hyams, J. S. (2001) A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast. Nature 412, 352–355.PubMedGoogle Scholar
  21. 21.
    Sharp, D. J., Rogers, G. C., and Scholey J. M. (2000) Microtubule motors in mitosis. Nature 407, 41–47.PubMedGoogle Scholar
  22. 22.
    Kallio, M. J., Beardmore, V. A., Weinstein, J., and Gorbsky, G. J. (2003) Rapid microtubule-independent dynamics of Cdc20 at kinetochores and centrosomes in mammalian cells. J. Cell Biol. 158, 841–847.Google Scholar
  23. 23.
    Chung, E. and Chen, R. H. (2003) Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nat. Cell Biol. 5, 748–753.PubMedGoogle Scholar
  24. 24.
    Zhou, G., Bao, Z. Q., and Dixon, J. E. (1995) Components of a new human protein kinase signal transduction pathway. J. Biol. Chem. 270, 12665–12669.PubMedGoogle Scholar
  25. 25.
    Regan, C. P., Li, W., Boucher, D. M., Spatz, S., Su, M. S., and Kuida, K. (2002) Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc. Natl. Acad. Sci. USA 99, 9248–9253.PubMedGoogle Scholar
  26. 26.
    Chao, T. H., Hayashi, M., Tapping, R. I., Kato, Y., and Lee, J. D. (1999) MEKK3 directly regulates MEK5 as part of the big mitogen-activated protein kinase 1 (BMK1) signaling pathway. J. Biol. Chem. 274, 36035–36038.PubMedGoogle Scholar
  27. 27.
    Abe, J. I., Kusuhara, M., Berk, B. C., and Lee, J. D. (1996) Big mitogen-activated protein kinase 1 (BMK1) is a redoxsensitive kinase. J. Biol. Chem. 271, 16586–16590.PubMedGoogle Scholar
  28. 28.
    Kato, Y., Kravchenko, V. V., Tapping, R. I., Han, J., Ulevitch, R. J., and Lee, J. D. (1997) BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 16, 7054–7066.PubMedGoogle Scholar
  29. 29.
    Yan, C., Luo, H., Lee, J. D., Abe, J., and Berk, B. C. (2001) Molecular cloning of mouse ERK5/BMK1 splice variants and characterization of ERK5 functional domains. J. Biol. Chem. 276, 10870–10878.PubMedGoogle Scholar
  30. 30.
    Lin, Q., Schwarz, J., Bucana, C., and Olson, E. N. (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276, 1404–1407.PubMedGoogle Scholar
  31. 31.
    English, J. M., Pearson, G., Hockenberry, T., Shivakumar, L., White, M. A., and Cobb, M. H. (1999) Contribution of the ERK5/MEK5 pathway to Ras/Raf signaling and growth control. J. Biol. Chem. 274, 31588–31592.PubMedGoogle Scholar
  32. 32.
    Kato, Y., Chao, T. H., Hayashi, M., Tapping, R. I., and Lee, J. D. (2000) Role of BMK1 in regulation of growth factor-induced cellular responses. Immunol. Res. 21, 233–237.PubMedGoogle Scholar
  33. 33.
    Pearson, G., English., J. M., White, M. A., and Cobb, M. H. (2001) ERK5 and ERK2 cooperate to regulate NF-kB and cell transformation. J. Biol. Chem. 276, 7927–7931.PubMedGoogle Scholar
  34. 34.
    Tapping, R. I., Yutaka, K., Chao, T. H., Hayashi, M., Lo, J. F., Kim, S. W., and Lee, J. D. (2004) Investigating the cellular BMK1/ERK5 signaling pathway. Methods Mol. Biol. 250, 89–96.PubMedGoogle Scholar
  35. 35.
    Raviv, Z., Kalie, E., and Seger, R. (2004) MEK5 and ERK5 are localized in the nuclei of resting as well as stimulated cells, while MEKK2 translocates from the cytosol to the nucleus upon stimulation. J. Cell Sci. 117, 1773–1784.PubMedGoogle Scholar
  36. 36.
    Han, J., Lee, J. D., Bibbs, L., and Ulevitch, R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811.PubMedGoogle Scholar
  37. 37.
    Jiang, Y., Chen, C., Li, Z., Guo, W., Gegner, J. A., Lin, S., and Han, J. (1996) Characterization of the structure and function of a new mitogen-activated protein kinase (p38b). J. Biol. Chem. 271, 17920–17926.PubMedGoogle Scholar
  38. 38.
    Jiang, Y., Gram, H., Zhao, M., et al. (1997) Characterization of the structure and function of the fourth member of the p38 group of mitogen-activated protein kinases, p38d. J. Biol. Chem. 272, 30122–30128.PubMedGoogle Scholar
  39. 39.
    Li, Z., Jiang, Y., Ulevitch, R. J., and Han, J. (1996) The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem. Biophys. Res. Commun. 228, 334–340.PubMedGoogle Scholar
  40. 40.
    Wang, X. S., Diener, K., Manthey, C. L., et al. (1997) Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J. Biol. Chem. 272, 23668–23674.PubMedGoogle Scholar
  41. 41.
    Raingeaud, J., Gupta, S., Rogers, J. S. et al. (1995) Proinflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420–7426.PubMedGoogle Scholar
  42. 42.
    Read, M. A., Whitley, M. Z., Gupta, S., et al. (1997) Tumor necrosis factor α-induced E-selectin expression is activated by the nuclear factor-kB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways. J. Biol. Chem. 272, 2753–2761.PubMedGoogle Scholar
  43. 43.
    Aplin, E. A., Hogan, B. P., Tomeu, J. and Juliano, R. L. (2002) Cell adhesion differentially regulates the nucleocytoplasmic distribution of active MAP kinases. J. Cell Sci. 115, 2781–2790.PubMedGoogle Scholar
  44. 44.
    Ben-Levy, R., Hooper, S., Wilson, R., Paterson, H. F., and Marshall, C. J. (1998) Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAP-KAP kinase-2. Curr. Biol. 8, 1049–1057.PubMedGoogle Scholar
  45. 45.
    Mudgett, J. S., Ding, J., Guh-Siesel, L., et al. (2000) Essential role for p38a mitogen-activated protein kinase in placental angiogenesis. Proc. Natl. Acad. Sci. U S A 97, 10454–10459.PubMedGoogle Scholar
  46. 46.
    Allen, M., Svensson, L., Roach, M., Hambor, J., McNeish, J., and Gabel, C. A. (2000) Deficiency of the stress kinase p38α results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J. Exp. Med. 191, 859–869.PubMedGoogle Scholar
  47. 47.
    Campos, C. B., Bedard, P. A., and Linden, R. (2002) Activation of p38 mitogen-activated protein kinase during normal mitosis in the developing retina. Neuroscience 112, 583–591.PubMedGoogle Scholar
  48. 48.
    Molnar, A., Theodoras, A. M., Zon, L. I., and Kyriakis, J. M. (1997) Cdc42Hs, but not Rac1, inhibits serum-stimulated cell cycle progression at G1/S through a mechanism requiring p38/RK. J. Biol. Chem. 272, 13229–13235.PubMedGoogle Scholar
  49. 49.
    Swenson, K. I., Winkler, K. E., and Means, A. R. (2003) A new identity for MLK3 as a NIMA-related, cell cycle-regulated kinase that is localized near centrosomes and influences microtubule organization. Mol. Cell. Biol. 14, 156–172.Google Scholar
  50. 50.
    Kishi, H., Nakagawa, K., Matsumoto, M., et al. (2001) Osmotic shock induces G1 arrest through p53 phosphorylation at Ser33 by activated p38MAPK without phosphorylation at Ser15 and Ser20. J. Biol. Chem. 276, 39115–39122.PubMedGoogle Scholar
  51. 51.
    Kim, G. Y., Mercer, S. E., Ewton, D. Z., Yan, Z., Jin, K., and Friedman, E. (2002) The, stress-activated protein kinases p38 alpha and JNK1 stabilize p21(Cip1) by phosphorylation. J. Biol. Chem. 277, 29792–29802.PubMedGoogle Scholar
  52. 52.
    Xiu, M., Kim, J., Sampson, E., Huang, C. Y., Davis, R. J., Paulson, K. E., and Yee, A. S. (2003) The transcriptional repressor HBP1 is a target of the p38 mitogen-activated protein kinase pathway in cell cycle regulation. Mol. Cell Biol. 23, 8890–8901.PubMedGoogle Scholar
  53. 53.
    Casanovas, O., Miro, F., Estanol, J. M., Itarte, E., Agell, N., and Bachs, O. (2000) Osmotic stress regulates the stability of cyclin D1 in a p38SAPK2-dependent manner. J. Biol. Chem. 275, 35091–35097.PubMedGoogle Scholar
  54. 54.
    Lavoie, J. N., L’Allemain, G., Brunet, A., Muller, R., and Poussegur, J. (1996) Cyclin D1 expression is regulated positively by the p42/p44 MAPK and negatively by the p38/HOG MAPK pathway. J. Biol. Chem. 271, 20608–20618.PubMedGoogle Scholar
  55. 55.
    Yee, A. S., Paulson, E. K., McDevitt, M. A. et al. (2004) The HBP1 transcriptional repressor and the p38 MAP kinase: unlikely partners in G1 regulation and tumor suppression. Gene 336, 1–13.PubMedGoogle Scholar
  56. 56.
    Nath, N., Wang, S., Betts, V., Knudsen, E., and Chellappan, S. (2003) Apoptotic and mitogenic stimuli inactivate Rb by differential utilization of p38 and cyclin-dependent kinases. Oncogene 22, 5986–5894.PubMedGoogle Scholar
  57. 57.
    Bulavin, D. V., Higashimoto, Y., Popoff, I. J., et al. (2001) Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 401, 102–107.Google Scholar
  58. 58.
    Takenaka, K., Moriguchi, T., and Nishida, E. (1998) Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science. 280, 599–602.PubMedGoogle Scholar
  59. 59.
    Wang, X., McGowan, C. H., Zhao, M., et al. (2000) Involvement of the MKK6-p38γ cascade in g-radiation-induced cell cycle arrest. Mol. Cell. Biol. 20, 4543–4552.PubMedGoogle Scholar
  60. 60.
    Gupta, S. Barrett, T., Whitmarsh, A. J., (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 15, 2760–2770.PubMedGoogle Scholar
  61. 61.
    Mohit, A. A., Martin, J. H., and Miller, C. A. (1995) p493F12 kinase: a novel MAP kinase expressed in a subset of neurons in the human nervous system. Neuron 14, 67–78.PubMedGoogle Scholar
  62. 62.
    Derijard, B., Hibi, M., Wu, I. H. et al. (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037.PubMedGoogle Scholar
  63. 63.
    Kyriakis, J. M., Banerjee, P., Nikolakaki, E., et al. (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156–160.PubMedGoogle Scholar
  64. 64.
    Dickens, M., Rogers, J. S., Cavanaugh, J., et al. (1997) A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277, 693–696.PubMedGoogle Scholar
  65. 65.
    MacCorkle-Chosnek, R. A., VanHooser, A., Goodrich, D. W., Brinkley, B. R., and Tan, T. H. (2001) Cell cycle regulation of c-Jun N-terminal kinase activity at the centrosomes. Biochem. Biophys. Res. Commun. 289, 173–180.PubMedGoogle Scholar
  66. 66.
    Kharbanda, S., Saxena, S., Yoshida, K., et al. (2000) Translocation of SAPK/JNK to mitochondria and interaction with Bcl-XL in response to DNA damage. J. Biol. Chem. 275, 322–332.PubMedGoogle Scholar
  67. 67.
    Eminel, S., Klettner, A., Roemer, L., Herdegen, T., and Waetzig, V. (2004) JNK2 translocates to the mitochondria and mediates cytochrome c release in PC12 cells in response to 6-hydroxydopamine. J. Biol. Chem. 279, 55385–55392.PubMedGoogle Scholar
  68. 68.
    Mizukami, Y., Yoshioka, K., Morimoto, S., and Yoshida, K. (1997) A novel mechanism of JNK1 activation. Nuclear translocation and activation of JNK1 during ischemia and reperfusion. J. Biol. Chem. 272, 16657–16662.PubMedGoogle Scholar
  69. 69.
    Dong, C., Yang, D. D., Wysk, M., Whitmarsh, A. J., Davis, R. J., and Flavell, R. A. (1998) Defective T-cell differentiation in the absence of Jnk1. Science 282, 2092–2095.PubMedGoogle Scholar
  70. 70.
    Kuan, C. Y., Yang, D. D., Samantha, R. D. R., Davis, R. J., Rakic, P., and Flavell, R. A. (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667–676.PubMedGoogle Scholar
  71. 71.
    Yamamoto, K., Ichijo, H., and Korsemeyer, S. J. (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Mol. Cell. Biol. 19, 8469–8478.PubMedGoogle Scholar
  72. 72.
    Yang, D. D., Kuan, C. Y., Whitmarsh, A. J., et al. (1997) Absence of excitoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865–870.PubMedGoogle Scholar
  73. 73.
    Yang, D. D., Conze, D., Whitmarsh, A. J., et al. (1998) Differentiation of CD4+ T-cells to Th1 cells requires MAP kinase JNK2. Immunity 9, 575–585.PubMedGoogle Scholar
  74. 74.
    Sabapathy, K., Jochum, W., Hochedlinger, K., Chang, L., Karin, M. and Wagner, E. F. (1999) Defective neural tube closure and altered apoptosis in the absence of both JNK1 and JNK2. Mech. Dev. 89, 115–124.PubMedGoogle Scholar
  75. 75.
    Sabapathy, K., Hu, Y., Kallunki, T., et al. (1999) JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol. 9, 116–125.PubMedGoogle Scholar
  76. 76.
    Patel, R., Bartosch, B., and Blank, J. L. (1998) p21WAF1 is dynamically associated with JNK in human T-lymphocytes during cell cycle progression. J. Cell. Sci. 111, 2247–2255.PubMedGoogle Scholar
  77. 77.
    Shim, J., Lee, H., Park, J., Kim, H., and Choi, E. J. (1996) A non-enzymatic p21 protein inhibitor of stress-activated protein kinases. Nature 381, 804–807.PubMedGoogle Scholar
  78. 78.
    Potapova, O., Gorospe, M., Bost, F., et al. (2000) c-Jun N-terminal kinase is essential for growth of human T98G glioblastoma cells. J. Biol. Chem. 275, 24767–24775.PubMedGoogle Scholar
  79. 79.
    MacCorkle, R. A. and Tan, T.-H. (2004) Inhibition of JNK2 disrupts anaphase and produces aneuploidy in mammalian cells. J. Biol. Chem. 279, 40112–40121.PubMedGoogle Scholar
  80. 80.
    Du, L., Lyle, C. S., Obey, T. B., et al. (2004) Inhibition of cell proliferation and cell cycle progression by specific inhibition of basal JNK activity: evidence that mitotic bxl-2 phosphorylation is JNK-independent. J. Biol. Chem. 279, 11957–11966.PubMedGoogle Scholar
  81. 81.
    Fan, M., Du, L., Stone, A. A., Gilbert, K. M., and Chambers, T. C. (2000) Modulation of mitogen-activated protein kinases and phosphorylation of Bcl-2 by vinblastine represent persistent forms of normal fluctuations at G2-M1. Cancer Res. 60, 6403–6407.PubMedGoogle Scholar
  82. 82.
    Mingo-Sion, A. M., Marietta, P. M., Koller, E., Wolf, D. M., and Van Den Berg, C. L. (2004) Inhibition of JNK reduces G2/M transit independent of p53, leading to endoreduplication, decreased proliferation, and apoptosis in breast cancer cells. Oncogene 23, 596–604.PubMedGoogle Scholar
  83. 83.
    Bennett, B. L., Sasaki, D. T., Murray, B. W., et al. (2001) SP600125, an anthrapyrazole inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13681–13686.PubMedGoogle Scholar
  84. 84.
    Yu, J., Liu, X. W., and Kim, H. R. (2003) Platelet-derived growth factor (PDGF) receptor-alpha-activated c-Jun NH2-terminal kinase-1 is critical for PDGF-induced p21WAF1/CIP1 promoter activity independent of p53. J. Biol. Chem. 278, 49582–49588.PubMedGoogle Scholar
  85. 85.
    Buschmann, T., Potapova, O., Bar-Shira, A., et al. (2001) Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol. Cell. Biol. 21, 2743–2754.PubMedGoogle Scholar
  86. 86.
    Tchou, W. W., Yie, T. A., Tan, T.-H., Rom, W. N., and Tchou-Wong, K. M. (1999) Role of c-Jun N-terminal kinase 1 (JNK1) in cell cycle checkpoint activated by the protease inhibitor N-acetyl-leucinyl-leucinyl-norleucinal. Oncogene 18, 6974–6980.PubMedGoogle Scholar
  87. 87.
    Sabapathy, K., Kallunki, T., David, J. P., Graef, I., Karin, M., and Wagner, E. F. (2001) c-Jun NH2-terminal kinase (JNK)1 and JNK2 have similar and stage-dependent roles in regulating T-cell apoptosis and proliferation. J. Exp. Med. 193, 317–328.PubMedGoogle Scholar
  88. 88.
    Hochedlinger, K., Wagner, E. F., and Sabapathy, L. (2002) Differential effects of JNK1 and JNK2 on signal specific induction of apoptosis. Oncogene 21, 2441–2445.PubMedGoogle Scholar
  89. 89.
    Yang, Y. M., Bost, F., Charbono, W., et al. (2003) C-Jun NH2-terminal kinase mediates proliferation and tumor growth of human prostate carcinoma. Clin. Cancer Res. 9, 391–401.PubMedGoogle Scholar
  90. 90.
    Tsuiki, H., Tnani, M., Okamoto, I., et al. (2003) Constitutively active forms of c-Jun NH2-terminal kinase are expressed in primary glial tumors. Cancer Res. 63, 250–255.PubMedGoogle Scholar
  91. 91.
    Biggs, W. H. and Zipursky, S. L. (1992) Primary structure, expression, and signal-dependent tyrosine phosphorylation of a Drosophila homolog of extracellular signal-regulated kinase. Proc. Natl. Acad. Sci. USA 89, 6295–6299.PubMedGoogle Scholar
  92. 92.
    Lackner, M. R., Kornfeld, K., Miller, L. M., Horvitz, H. R., and Kim, S. K. (1994) A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Cacnorhabditis elegans. Genes. Dev. 8, 160–173.PubMedGoogle Scholar
  93. 93.
    Courchesne, W. E., Kunisawa, R., and Thorner, J. (1989) A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae. Cell 58, 1107–1119.PubMedGoogle Scholar
  94. 94.
    Han, S. J., Choi, K. Y., Brey, P. T., Lee, W. J. (1998) Molecular cloning and characterization of a Drosophila p38 mitogen-activated protein kinase. J. Biol. Chem. 273, 369–374.PubMedGoogle Scholar
  95. 95.
    Berman, K., McKay, J., Avery, L., and Cobb, M. (2001) Isolation and characterization of pmk-(1–3): three p38 homologs in Caenorhabditis elegans. Mol. Cell. Biol. Res. Commun. 4, 337–344.PubMedGoogle Scholar
  96. 96.
    Brewster, J. L., de Valoir, T., Dwyer, N. D., Winter, E. and Gustin, M. C. (1993) An osmosensing signal transduction pathway in yeast. Science 259, 1760–1763.PubMedGoogle Scholar
  97. 97.
    Sluss, H. K., Han, Z., Barrett, T., Davis, R. J., and Ip, Y. T. (1996) A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev. 10, 2745–2758.PubMedGoogle Scholar
  98. 98.
    Kawasaki, M., Hisamoto, N., Iono, Y., Yamamoto, M., Ninomiya-Tsuji, J., and Matsumoto, K. A. (1999) Caenorhabditis elegans JNK signal transduction pathway regulates coordinated movement via type-D GABAergic motor neurons. EMBO J. 18, 3604–3615.PubMedGoogle Scholar
  99. 99.
    Pages, G., Guerin, S., Grall, D., et al. (1999) Defective thymocyte maturation in p44 MAP kinase (Erk1) knockout mice. Science 286, 1374–1377.PubMedGoogle Scholar
  100. 100.
    Mazzucchelli, C., Vantaggiato, C., Ciamei, A et al. (2002) Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 34, 807–820.PubMedGoogle Scholar
  101. 101.
    Saba-El-Leil, M. K., Vella, F. D., Vernay, B., et al. (2003) An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep. 10, 964–968.Google Scholar
  102. 102.
    Constant, S. L., Dong, C., Yang, D. D., Wysk, M., Davis, R. J., and Flavell, R. A. (2000) JNK1 is required for T-cell-mediated immunity against Leishmania major infection. J. Immunol. 165, 2671–2676.PubMedGoogle Scholar
  103. 103.
    She, Q. B., Chen, N., Bode, A. M., Flavell, R. A., and Dong, Z. (2002) Deficiency of c-Jun-NH2-terminal kinase-1 in mice enhances skin tumor development by 12-O-tertradecanoylphorbol-13-acetate. Cancer Res. 62, 1343–1348.PubMedGoogle Scholar
  104. 104.
    Chen, N., Nomura, M., She, Q. B., et al. (2001) Suppression of skin tumourigensis in c-Jun NH2-terminal kinase-2-deficient mice. Cancer Res. 61, 3908–1912.PubMedGoogle Scholar
  105. 105.
    Tournier, C., Hess, P., Yang, D. D., et al. (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870–874.PubMedGoogle Scholar
  106. 106.
    Adams, R. H., Porras, A., Alonso, G., et al. (2000) Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol. Cell. 6, 109–116.PubMedGoogle Scholar
  107. 107.
    Tamura, K., Sudo, T., Senftleben, U., Dadak, A. M., Johnson, R., and Karin, M. (2000) Requirement for p38a in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 102, 221–231.PubMedGoogle Scholar
  108. 108.
    Mudgett, J. S., Ding, J., Guh-Siesel, L., et al. (2000) Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc. Natl. Acad. Sci. USA 97, 10454–10459.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Department of ImmunologyBaylor College of MedicineHouston

Personalised recommendations