Cell Biochemistry and Biophysics

, Volume 42, Issue 3, pp 277–345 | Cite as

Osmosis and solute—Solvent drag

Fluid transport and fluid exchange in animals and plants
Review Article

Abstract

In 1903, George Hulett explained how solute alters water in an aqueous solution to lower the vapor pressure of its water. Hulett also explained how the same altered water causes osmosis and osmotic pressure when the solution is separated from liquid water by a membrane permeable to the water only. Hulett recognized that the solute molecules diffuse toward all boundaries of the solution containing the solute. Solute diffusion is stopped at all boundaries, at an open-unopposed surface of the solution, at a semipermeable membrane, at a container wall, or at the boundary of a solid or gaseous inclusion surrounded by solution but not dissolved in it. At each boundary of the solution, the solute molecules are reflected, they change momentum, and the change of momentum of all reflected molecules is a pressure, a solute pressure (i.e., a force on a unit area of reflecting boundary). When a boundary of the solution is open and unopposed, the solute pressure alters the internal tension in the force bonding the water in its liquid phase, namely, the hydrogen bond. All altered properties of the water in the solution are explained by the altered internal tension of the water in the solution. We acclaim Hulett's explanation of osmosis, osmotic pressure, and lowering of the vapor pressure of water in an aqueous solution. His explanation is self-evident. It is the necessary, sufficient, and inescapable explanation of all altered properties of the water in the solution relative to the same property of pure liquid water at the same externally applied pressure and the same temperature. We extend Hulett's explanation of osmosis to included the osmotic effects of solute diffusing through solvent and dragging on the solvent through which it diffuses. Therein lies the explanations of (1) the extravasation from and return of interstitial fluid to capillaries, (2) the return of luminal fluid in the proximal and distal convoluted tubules of a kidney nephron to their peritubular capillaries, (3) the return of interstitial fluid to the vasa recta, (4) return of aqueous humor to the episcleral veins, and (5) flow of phloem from source to sink in higher plants and many more examples of fluid transport and fluid exchange in animal and plant physiology. When a membrane is permeable to water only and when it separates differing aqueous solutions, the flow of water is from the solution with the lower osmotic pressure to the solution with the higher osmotic pressure. On the contrary, when no diffusion barrier separates differing parts of an aqueous solution, fluid may flow from the part with the higher osmotic pressure to the part with the lower osmotic pressure because the solute molecules diffuse toward their lower concentration and they drag on the water through which they diffuse. This latter osmotic effect (diffusing solute dragging on solvent or counterosmosis) between differing parts of a solution has long been neglected and ignored when explaining fluid fluxes in plant and animal physiology. For two solutions separated by a semipermeable membrane, osmosis is the flow of its solvent from the solution with the lower solute concentration into the solution with the higher solute concentration. For two contiguous solutions not separated by a semipermeable membrane, counterosmosis is the flow of solution with the higher solute concentration toward the solution with the lower solute concentration. Corrective treatment of medical disorders attributable to faulty distribution of body fluids (e.g., glaucoma, pulmonary edema, systemic edema) are possible with these new insights regarding fluid transport and exchange provided in this review.

Index Entries

Osmosis Hulett's theory solute—solvent drag counterosmosis fluid transport fluid exchange intraocular pressure (IOP) glaucoma Soret effect pulmonary edema congestive heart failure water potential phloem transport guttation soil water transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hulett, G. (1903), Beziehung zwischen negativem Druck und osmotischem Druck. Z. Phys. Chem. 42, 353–368.Google Scholar
  2. 2.
    Lewis, G. N. (1908) The osmotic pressure of concentrated solutions, and the laws of the perfect solution. J. Am. Chem. Soc. 30, 668–683.CrossRefGoogle Scholar
  3. 3.
    Laidler, K. J. (1993), The World of Physical Chemistry, Oxford University Press, NY.Google Scholar
  4. 4.
    Hammel, H. T. and Scholander, P. F. (1976) Osmosis and Solvent Tension, Springer-Verlag, Berlin.Google Scholar
  5. 5.
    Dutrochet, R. J. H. (1828) Nouvelles recherches sur l'endosmose et l'exoosmose. JB Ballière, Paris.Google Scholar
  6. 6.
    Traube, M. (1867) Experimente zur theorie der zellenbildung und endosome. Arch. Anat. Physiol. Wiss. Med. 87–165Google Scholar
  7. 7.
    Krogh, A. (1959), The Anatomy and Physiology of Capillaries. Hafner Publishing Company, New York.Google Scholar
  8. 8.
    Pfeffer, W. (1877), Osmotische Untersuchungen, Studien zur Zellenmechanik, Leipzig. Translation into English in Harper's Scientific Memoirs (Ames, J. S. and Jones, H. C. eds.), New York, 1899.Google Scholar
  9. 9.
    van't Hoff, J. H. (1886) Une propriété général de la matiére diluée. Svenska Vet. Akad. Handl. 21, 17, 43.Google Scholar
  10. 10.
    van't Hoff, J. H. (1886) Lois de l'équilibre chemique dans l'état dilus gazeux ou dissous. Svenska Vet. Akad. Handl. 21, 17, 217.Google Scholar
  11. 11.
    van't Hoff, J. H. (1887) Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen. Z. Physik. Chem. 1, 481–508.Google Scholar
  12. 12.
    Hammel, H. T. and Schlegel, W. W. (2003) Explaining osmosis: by altered water concentration or by altered internal water tension. FASEB J. 8, 14.Google Scholar
  13. 13.
    van't Hoff, J. H. (1892), Zur Theorie der Lösungen. Z. Physik. Chem. 9, 477.Google Scholar
  14. 14.
    Meyer, L. (1890) Uber das Wessen des osmotischen Druckes. Z. Phys. Chem. 7, 23–27.Google Scholar
  15. 15.
    Fermi, E. (1936) Thermodynamics, Dover Publications Inc.Google Scholar
  16. 16.
    Scholander, P. F., Hammel, H. T., Bradstreet, E. D., and Hemmingsen, E. A. (1965) Sap pressure in vascular plants. Science 148, 339–347.PubMedCrossRefGoogle Scholar
  17. 17.
    Chinard, F. P. and Enns, T. (1956) Osmotic pressure. Science 124, 473–474.CrossRefGoogle Scholar
  18. 18.
    Scholander, P. F. (1971) State of water in osmotic processes. Microvasc. Res. 3, 215–232.PubMedCrossRefGoogle Scholar
  19. 19.
    Mysels, K. (1959). Introduction to Colloid Chemistry. Interscience Publishers, Inc., New York.Google Scholar
  20. 20.
    Mysels, K. J. (1978) Solvent tension or solvent concentration. J. Chem. Ed. 55, 21–22.Google Scholar
  21. 21.
    Mysels, K. J. (1997) Vapor pressure lowering, somotic pressure, and the elementary pseudogas model. J. Phys. Chem. B. 101, 1893–1896.CrossRefGoogle Scholar
  22. 22.
    Hammel, H. T. and Scholander, P. F. (1973) Thermal motion and forced migration of colloidal particles generate hydrostatic pressure in solvent. Proc. Nat. Acad. Sci. U.S.A. 70, 124–129.CrossRefGoogle Scholar
  23. 23.
    Hammel, H. T. and Scholander, P. F. (1976) Osmosis and Tensile Solvent. Springer-Verlag, Berlin-New York.Google Scholar
  24. 24.
    Hammel, H. T. (1976) Colligative properties of a solution: enhanced tension in the solvent gives rise to alteration in solution. Science 192, 748–756.PubMedCrossRefGoogle Scholar
  25. 25.
    Hammel, H. T. (1986) Solubility and enhanced altered tension of solute in solution. Phys. Chem. Liq. 15, 185–202.CrossRefGoogle Scholar
  26. 26.
    Hammel, H. T. (1979) Forum on Osmosis. I. Osmosis: diminished solvent activity or altered solvent tension? Am. J. Physiol. 237, R95-R107.PubMedGoogle Scholar
  27. 27.
    Hammel, H. T. (1994) How solutes alter water in aqueous solutions. J. Phys. Chem. 98, 4196–4204.CrossRefGoogle Scholar
  28. 28.
    Hammel, H. T. (1998) Replacing Lewis' theory of osmosis with Hulett's theory of altered chemical potentials of reacting constituents in solution. Recent Res. Dev. Phys. Chem. 2, 77–111.Google Scholar
  29. 29.
    Hammel, H. T. (1999) Evolving ideas about osmosis and capillary fluid exchange FASEB J. 13, 213–223.PubMedGoogle Scholar
  30. 30.
    Hildebrand, J. H. (1979) Forum on osmosis: II. A criticism of “solvent tension” in osmosis. Am. J. Physiol. 237, R110-R113.Google Scholar
  31. 31.
    Mauro, A. (1997). Forum on Osmosis. III. Comments on Hammel and Schlolander's solvent tension theory and its application to osmotic flow. Am. J. Physiol. 237, R108-R109.Google Scholar
  32. 32.
    Soodak, H. and Iberall, A (1979) Forum on osmosis IV. More on osmosis and diffusion. Am. J. Physiol. 237, R114-R122.PubMedGoogle Scholar
  33. 33.
    Andrews, F. C. (1976) Colligative properties of simple solutions: solutes simply dilute the solvent; they do not cause tension in the solvent. Science 194, 567–571.PubMedCrossRefGoogle Scholar
  34. 34.
    Lachish, U. L. (1978) Derivation of some basic properties of ideal gases and solutions from processes of elastic collisions. J. Chem. Ed. 55, 369–371.Google Scholar
  35. 35.
    Katz, M. A. and Bresler, E. H. (1984) Osmosis, in Edema (Staub, N. C. and Taylor, A. E., eds.) Raven Press, New York.Google Scholar
  36. 36.
    Ben-Sasson, S. A. and Grover, N. B. (2003) Osmosis: a macroscopic phenomenon, a microscopic view. Adv. Physiol. Ed., 27, 15–19.Google Scholar
  37. 37.
    West, J. B. (1990) Best and Taylor's Physiological Basis of Medical Practice 12th ed. Williams & Wilkins, Baltimore.Google Scholar
  38. 38.
    Withers, P. C. (1992) Comparative Animal Physiology, Saunders College Publishing HBJ, Philadelphia.Google Scholar
  39. 39.
    Pauling, L. (1964), College Chemistry: An Introductory Textbook of General Chemistry: Section 17–18; W. H. Freeman & Co., San Francisco.Google Scholar
  40. 40.
    Schultz, S. G. (1980) Basic Principles of Membrane Transport. Cambridge University Press, New York.Google Scholar
  41. 41.
    Lewis, G. N. and Randall, M. (1961) Thermodynamics (revised by Pitzer, K. S. and Brewer, L. II, eds.) McGraw-Hill, New York.Google Scholar
  42. 42.
    Raoult, F. M. (1878) Sur la tension de vapeur et sur le point de cong'elation de solutions salines. Compt. Rend. 87, 167–171.Google Scholar
  43. 43.
    Raoult, F. M. (1883) Lo de cong'elation des solutions aqueuses des materl'eres organiques. Ann. Chim. Phys. 28, 133–144.Google Scholar
  44. 44.
    Raoult, F. M. (1882) Loi de cong'elation des solutions benzeniques des substances neutres. Comput. Rend. 95, 187.Google Scholar
  45. 45.
    Raoult, F. M. (1882) Loi de geng'elation des dissolvents. Compt. Rend. 95, 1030–1033.Google Scholar
  46. 46.
    Schermer, M. (2002) Smart people believe weird things—rarely does anyone weigh the facts before deciding what to believe. Sci. Am. 287, 35.CrossRefGoogle Scholar
  47. 47.
    Guyton, A. C. and Hall, J. E. (2000) Textbook of Medical Physiology. 10th ed. W. B. Saunders Co., Philadelphia.Google Scholar
  48. 48.
    Millero, F. G. and Knox, J. H. (1973) Apparent molal volumes of aqueous NaF, Na2SO4, KCl, K2SO4, MgCl2 and MgSO4 solutions at 0°C and 50°C. J. Chem. Eng. Data 18, 407–411.CrossRefGoogle Scholar
  49. 49.
    Ussing, N. S. (1952) Some aspects of the application of tracers in permeability studies. Adv. Enzymol. 13, 21.Google Scholar
  50. 50.
    Pappenheimer, J. R. (1953) Passage of molecules through capillary walls. Physiol. Rev. 33, 389–423.Google Scholar
  51. 51.
    Mauro, A. (1957) Nature of solvent transfer in osmosis. Science 126, 252–253.PubMedCrossRefGoogle Scholar
  52. 52.
    Meschia, G. and Setnikar, I. (1959) Experimental study of osmosis through a collodion membrane. J. Gen. Physiol. 42, 429–444.CrossRefGoogle Scholar
  53. 53.
    Dobson, H. J. E. (1925) The partial pressures of aqueous ethyl alcohol. J. Chem. Soc. (London) 127, 2866–2873.Google Scholar
  54. 54.
    Dixon, H. (1903) A transpiration model. Roy. Dublin Soc. Sci. Proc. 10, 114–121.Google Scholar
  55. 55.
    Dixon, H. H. (1914), Transpiration and the Ascent of Sap in Plants, Macmillan and Co., London.Google Scholar
  56. 56.
    Slatyer, R. O., (1967) Plant-Water Relationships. Academic Press, London.Google Scholar
  57. 57.
    Noble, P. S. (1999) Physicochemical & Environmental Plant Physiology. 2nd ed. Academic Press, San Diego.Google Scholar
  58. 58.
    Zimmerman, U., Haase, A., Langbein, D., and Meinzer, F. C. (1993) Mechanisms of long distance water transport in plants: a reexamination of some paradigms in the light of new evidence. Philos. Trans. Roy. Soc. London Ser. B. 341, 19–31.CrossRefGoogle Scholar
  59. 59.
    Canny, M. J. (1998) Transporting water in plants. Am. Sci. 86, 152–159.CrossRefGoogle Scholar
  60. 60.
    Steudle, E. (2001) The cohesion-tension mechanism and the acquisition of water by plant roots. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52, 847–875.CrossRefGoogle Scholar
  61. 61.
    Noyes, A. (1900) Die genaue Beziehung zwischen osmotischen Druck und Dampfdruck. Z. Phys. Chem. 35, 707–721.Google Scholar
  62. 62.
    Herzfeld, K. F. (1937) Thermodynamische und kinetische Betrachtungen über die Zuststandekommen der Dampfdruckerniedrigung von Lösungen. Phys. Z. 38, 58–64.Google Scholar
  63. 63.
    Duclaux, J. (1965) Théorie de gas. J. Chim. Phys. 65, 435–443.Google Scholar
  64. 64.
    Hudson, C. S. (1906) The freezing of pure liquids and solutions under various kinds of positive and negative pressure and the similarity between osmotic pressure and negative pressure. Phys. Rev. 22, 257–264.Google Scholar
  65. 65.
    Renner, O. (1915) Theoretisches und Experimentelles zur Koheäionstheorie der Wasserbewegung. Jahrbücher für wissenschaftliche. Botanik 56, 617–667.Google Scholar
  66. 66.
    Hammel, H. T. (1995) Roles of colloidal molecules in Starling's hypothesis and in returning interstitial fluid to the vasa recta. Am. J. Physiol. 268, H2133-H2145.PubMedGoogle Scholar
  67. 67.
    Hammel, H. T. (1991) Internal pressure, hard core and free space volumes and Boltzmann's rule. Phys. Chem. Liq. 23, 69–86.CrossRefGoogle Scholar
  68. 68.
    Hammel, H. T. (1996) Boltzmann's principle depicts distribution of water molecules between vapor and liquid for pure liquid and for aqueous solutions. J. Phys. Chem. 99, 8392–8401.CrossRefGoogle Scholar
  69. 69.
    Hildebrand, J. H. (1928). Internal pressure. In: International Critical Tables of Numerical Data, Physics, Chemistry and Technology, vol. 4. (Washburn, E. W., ed.) Knovel, p. 19.Google Scholar
  70. 70.
    Soret, Ch. (1884) Arch. Sci. Phys. Nat. 12, 615.Google Scholar
  71. 71.
    Hammel, H. T. and Maggert, J. E. (1980) Super separation: Soret effect reversed. Separ. Sci. Tech. 15, 81–87.CrossRefGoogle Scholar
  72. 72.
    Schlegel, W. M., Prange, H. D., Furia, E. J., Bowyer, T. D., and Hammel, H. T. (2003) Rethinking the teaching of osmosis. FASEB J. 11, 14.Google Scholar
  73. 73.
    Hammel, H. T. (2002) Osmotic effects on solvent of solute diffusing in solution. Int. Adv. Res. Physical Chem. 2, 11–33.Google Scholar
  74. 74.
    Kiil, F. (1982) Kinetics of osmosis. Kidney Int. 21, 303–308.PubMedCrossRefGoogle Scholar
  75. 75.
    McKenna, M. J., Heigenhauser, G. J. F., McKelvie, R. S., MacDougal, J. D., and Jones, N. L. (1997) Sprint training enhances ionic regulation during intense exercise in man. J. Physiol. 501, 687–702.PubMedCrossRefGoogle Scholar
  76. 76.
    Åstrand, P. O., Rodahl, K., Dahl, H. A., and Strømme, S. R. (2003), Textbook of Work Physiology: Physiological Basis of Exercise 4th ed. Human Kinetics, Champaign, IL.Google Scholar
  77. 77.
    Starling, E. H. (1896) On the absorption of fluids from connective tissue spaces. J. Physiol. (Lond.) 19, 312–326, 80.Google Scholar
  78. 78.
    Schmidt-Nielsen, K. (1979) Animal Physiology: Adaptation and Environment. 2nd ed. Cambridge University Press, Cambridge, UK.Google Scholar
  79. 79.
    Levick, J. R. (2004) Revision of the Starling principle: new views of tissue fluid balance. J. Physiol. (Lond.) 557, 704.CrossRefGoogle Scholar
  80. 80.
    Michel, C. C. (2004) Fluid exchange in the microcirculation. J. Physiol. (Lond.) 557, 701–702.CrossRefGoogle Scholar
  81. 81.
    Adamson, R. H., Lenz, J. F., Zhang, X., Adamson, G. N., Weinbaum, S., and Currie, F. E. (2004) Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J. Physiol. (Lond.) 557, 889–907.CrossRefGoogle Scholar
  82. 82.
    Hammel, H. T. (2004) Ingesting only glucose: behavioral adaptation to lessen high altitude pulmonary edema. Adaptation Biology and Medicine, Volume 4: Current Concepts. (Hargens, A. R., Takeda, N., and Singal, P. K., eds.) Narosa Book distributors Pvt. Ltd., New Delhi, pp. 124–136.Google Scholar
  83. 83.
    Tripathi, R. C. and Tripathi, B. J. (1984) Anatomy of the eye, orbit, and adnexa, in The Eye. 3rd ed. (Davson, H., ed.). Academic Press, New York.Google Scholar
  84. 84.
    Davson, H. (1969) The intraocular fluids. The Eye Vol. 1. Ed. H. Academic Press, New York.Google Scholar
  85. 85.
    Hammel, H. T. (1968) Measurement of turgor pressure and its gradient in the phloem of oak. J. Plant Physiol. 43, 1042–1048.CrossRefGoogle Scholar
  86. 86.
    Münch, E. (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer Verlagsbuchhandlung, Jena, Germany.Google Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Department of Physiology and Biophysics, Medical SciencesIndiana University School of MedicineBloomington
  2. 2.Department of Biology, College of Arts and SciencesIndiana UniversityBloomington

Personalised recommendations