Cell Biochemistry and Biophysics

, Volume 41, Issue 2, pp 265–277

Messenger RNA decay in mammalian cells

The exonuclease perspective
  • David T. Fritz
  • Naomi Bergman
  • Walter J. Kilpatrick
  • Carol J. Wilusz
  • Jeffrey Wilusz
Review Article


The majority of messenger RNA (mRNA) decay in mammalian cells appears to be the work of a series of RNA exoribonucleases. A set of multiple poly(A)-specific deadenylases has been identified, some, if not most, of which are likely to play a role in the key first step of mRNA turnover—the regulated shortening of the poly (A) tail. After deadenylation, the transcript likely gets degraded by either a 5′-to-3′ or a 3′-to-5′ exonucleolytic pathway. Interestigly, multiple exonucleases have been identified for both of these pathways that appear to form multicomponent complexes with diverse roles in cellular biology. Therefore these enzymes appear not only to be important components of the mRNA turnover machinery, but also may function in a networked fashion in the post-transcriptional control of gene expression.

Index Entries

mRNA decay exosome exonuclease deadenylase mRNA stability decapping AU-rich elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kressler, D., Linder P., and de La Cruz, J. (1999) Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 7897–7912.PubMedGoogle Scholar
  2. 2.
    Allmang, C., Kufel, J., Chanfreau, G., Mitchell, P., Petfalski, E., and Tollervey, D. (1999) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 18, 5399–5410.PubMedCrossRefGoogle Scholar
  3. 3.
    Allmang, C., Mitchell, P., Petfalski, E., and Tollervey, D. (2000) Degradation of ribosomal RNA precursors by the exosome. Nucleic acids Res. 28, 1684–1691.PubMedCrossRefGoogle Scholar
  4. 4.
    Hilleren, P., McCarthy, T., Rosbash, M., Parker, R., and Jensen, T. H. (2001) Quality control of mRNA 3'-end processing is linked to the nuclear exosome. Nature 413, 538–542.PubMedCrossRefGoogle Scholar
  5. 5.
    Libri, D., Dower, K., Boulay, J., Thomsen, R., Rosbash, M., and Jensen, T. H. (2002) Interactions between mRNA export comitment, 3'-end quality control, and nuclear degradation. Mol. Cell. Biol. 22, 8254–8266.PubMedCrossRefGoogle Scholar
  6. 6.
    Hilleren, P. J., and Parker, R. (2003) Cytoplasmic degradation of splice defective pre-mRNAs and intermediates. Mol. Cell 12, 1453–1465.PubMedCrossRefGoogle Scholar
  7. 7.
    Moore, M. J. (2002) Nuclear RNA turnover. Cell 108, 431–434.PubMedCrossRefGoogle Scholar
  8. 8.
    Mitchell, P. and Tollervey, D. (2003) An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3'»5' degradation. Mol. Cell. 11, 1405–1413.PubMedCrossRefGoogle Scholar
  9. 9.
    Takahashi, S., Araki, Y., Sakuno, T., and Katada, T., (2003) Interaction between Ski7p and Upf1p is required for nonsense-mediated 3'-to-5' mRNA decay in yeast. EMBO J. 22, 3951–3959.PubMedCrossRefGoogle Scholar
  10. 10.
    Frischmeyer, P. A., van Hoof, A., O'Donnell, K., Guerrerio, A. L., Parker, R., and Dietz, H. C. (2002) An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261.PubMedCrossRefGoogle Scholar
  11. 11.
    Araki, Y., Takahashi, S., Kobayashi, T., Kajiho, H., Hoshino, S., and Katada, T. (2001) Ski7p G protein interacts with the exosome and the Ski complex for 3′-to-5′ mRNA decay in yeast. EMBO J. 20, 4684–4693.PubMedCrossRefGoogle Scholar
  12. 12.
    van Hoof, A., Staples, R. R., Baker, R. E., and Parker, R. (2000) Function of the Ski4p (Csl4p) and Ski7p proteins in 3′-to-5′ degradation of mRNA. Mol. Cell. Biol. 20, 8230–8243.PubMedCrossRefGoogle Scholar
  13. 13.
    Butler, J. S. (2002) The yin and yang of the exosome. Trends Cell. Biol. 12, 90–96.PubMedCrossRefGoogle Scholar
  14. 14.
    Mitchell, P., Petfalski, E., and Tollervey, D. (1996) The 3′ end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev. 15, 502–513.CrossRefGoogle Scholar
  15. 15.
    Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., and Tollervey, D. (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′-to-5′ exoribonucleases. Cell 91, 457–466.PubMedCrossRefGoogle Scholar
  16. 16.
    Zuo, Y. and Deutscher, M. P. (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acid Res. 29, 1017–1026.PubMedCrossRefGoogle Scholar
  17. 17.
    Allmang, C., Petfalski, E., Podtelejnikov, A., Mann, M., Tollervey, D., and Mitchell, P. (1999) The yeast exosome and human PM-Scl are related complexes of 3′-to-5′ exonucleases. Genes Dev. 13, 2148–2158.PubMedGoogle Scholar
  18. 18.
    Chekanova, J. A., Dutko, J. A., Mian, I. S., and Belostotsky, D. A. (2002) Arabidopsis thaliana exosome subunit AtRrp4 is a hydrolytic 3′−>5′ exonuclease containing S1 and KH RNA-binding domains. Nucleic Acids Res. 30, 695–700.PubMedCrossRefGoogle Scholar
  19. 19.
    Chekanova, J. A., Shaw, R. J., Wills, M. A., and Belostotsky, D. A. (2000) Poly (A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells. J. Biol. Chem. 275, 33158–33166.PubMedCrossRefGoogle Scholar
  20. 20.
    Estevez, A. M., Kempf, T., and Clayton, C. (2001) The exosome of Trypanosoma brucei EMBO J. 20, 3831–3839.PubMedCrossRefGoogle Scholar
  21. 21.
    Estevez, A. M., Lehner, B., Sanderson, C. M., Ruppert, T., and Clayton, C. (2003) The roles of intersubunit interactions in exosome stability. J. Biol. Chem. 278, 34943–34951.PubMedCrossRefGoogle Scholar
  22. 22.
    Andrulis, E. D., Werner, J., Nazarian, A., Erdjument-Bromage, H., Tempst, P., and Lis, J. T. (2002) The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 420, 837–841.PubMedCrossRefGoogle Scholar
  23. 23.
    Evguenieva-Hackenburg, E., Walter, P., Hochleitner, E., Lottspeich, F., and Klug, G. (2003) An exosome-like complex in Sulfolobus solfataricus. EMBO Rep. 4, 889–893.CrossRefGoogle Scholar
  24. 24.
    Raijmakers, R., Egberts, W. V., van Venrooij, W. J., and Pruijn, G. J. (2002) Protein-protein interactions between human exosome components support the assembly of RNase PH-type subunits into a six-membered PNPase-like ring. J. Mol. Biol. 323, 653–663.PubMedCrossRefGoogle Scholar
  25. 25.
    Chen, C. Y., Gherzi, R., Ong, S. E., Chan, E. L. Raijmakers, R., Pruijn, G. J., et al. (2001) AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451–464.PubMedCrossRefGoogle Scholar
  26. 26.
    Alderuccio, F., Chan, E. K., and Tan, E. M. (1991) Molecular characterization of an autoantigen of PM-Scl in the polymyositis/scleroderma overlap syndrome: a unique and complete human cDNA encoding an apparent 75-kD acidic protein of the nucleolar complex. J. Exp. Med. 173, 941–952.PubMedCrossRefGoogle Scholar
  27. 27.
    Brouwer, R., Pruijn, G. J., and van Venrooij, W. J. (2001) The human exosome: an autoantigenic complex of exoribonuclease in myositis and scleroderma. Arthritis Res. 3, 102–106.PubMedCrossRefGoogle Scholar
  28. 28.
    Raijmakers, R., Egberts, W. V., van Venrooij, W. J., and Pruijn, G. J. (2003) The association of the human PM/Scl-75 autoantigen with the exosome is dependent on a newly identified N terminus. J. Biol. Chem. 278, 30698–30704.PubMedCrossRefGoogle Scholar
  29. 29.
    Lejeune, F., Li, X., and Maquat, L. E. (2003) Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol. Cell. 12, 675–687.PubMedCrossRefGoogle Scholar
  30. 30.
    Brouwer, R., Allmang, C., Raijmakers, R., van, Aarssen, Y., Egberts, W. V., Petfalski, E., et al. (2001) Three novel components of the human exosome. J. Biol. Chem. 276, 6177–6184.PubMedCrossRefGoogle Scholar
  31. 31.
    Mukherjee, D., Gao, M., O'Connor, J. P., Raijmakers, R., Pruijn, G., Lutz, C. S., et al. (2002) The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J. 21, 165–174.PubMedCrossRefGoogle Scholar
  32. 32.
    Brouwer, R., Vree Egberts, W. T., Hengstman, G. J., Raijmakers, R., van Engelen, B. G., Seelig, H. P., et al. (2002) Autoantibodies directed to novel components of the PM/Scl complex, the human exosome. Arthritis Res. 4, 134–138.PubMedCrossRefGoogle Scholar
  33. 33.
    Yang, X. F., Wu, C. J., Chen, L., Alyea, E. P., Canning, C., Kantoff, P., et al. (2002) CML28 is a broadly immunogenic antigen, which is overexpressed in tumor cells. Cancer Res. 62, 5517–5522.PubMedGoogle Scholar
  34. 34.
    Mitchell, P. and Tollervey, D. (2000) Musing on the structural organization of the exosome complex. Nat. Struct. Biol. 7, 843–846.PubMedCrossRefGoogle Scholar
  35. 35.
    Symmons, M. F., Williams, M. G., Luisi, B. F., Jones, G. H., and Carpousis, A. J. (2002) Running rings around RNA: a superfamily of phosphate-dependent RNases. Trends Biochem Sci. 27, 11–18.PubMedCrossRefGoogle Scholar
  36. 36.
    Aloy, P., Ciccarelli, F. D., Leutwein, C., Gavin, A. C., Superti-Furga, G., Bork, P., et al. (2002) A complex prediction: three-dimensional model of the yeast exosome. EMBO Rep. 3, 628–635.PubMedCrossRefGoogle Scholar
  37. 37.
    Raijmakers, R., Noordman, Y. E., van Venrooij, W. J., and Pruijn, G. J. (2002) Protein-protein interactions of hCs14p with other human exo-some subunits. J. Mol. Biol. 315, 809–818.PubMedCrossRefGoogle Scholar
  38. 38.
    Ford, L. P., Watson, J., Keene, J. D., and Wilusz, J. (1999) ELAV proteins stabilize deadenylated intermediates in a novel in vitro mRNA deadenylation/degradation system. Genes Dev. 13, 188–201.PubMedGoogle Scholar
  39. 39.
    Wang, Z. and Kiledjian, M. (2001) Functional link between the mammalian exosome and mRNA decapping. Cell 107, 751–762.PubMedCrossRefGoogle Scholar
  40. 40.
    Haile, S., Estevez, A. M., and Clayton, C. (2003) A role for the exosome in the in vivo degradation of unstable RNAs. RNA 9, 1491–1501.PubMedCrossRefGoogle Scholar
  41. 41.
    Korner, C. G. and Wahle, E. (1997) Poly (A) tail shortening by a mammalian poly(A)-specific 3′-exoribonuclease. J. Biol. Chem. 272, 1044–1046.CrossRefGoogle Scholar
  42. 42.
    Korner, C. G., Wormington, M., Muckenthaler, M., Schneider, S., Dehlin, E., and Wahle, E. (1998) The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. EMBO J. 17, 5427–5437.PubMedCrossRefGoogle Scholar
  43. 43.
    Ren, Y. G., Martinez, J., Kirsebom, L. A., and Virtanen, A. (2002) Inhibition of Klenow DNA polymerase and poly(A)-specific ribonuclease by aminoglycosides. RNA 8, 1393–1400.PubMedCrossRefGoogle Scholar
  44. 44.
    Copeland, P. R. and Wormington, M. (2001) The mechanism and regulation of deadenylation: identification and characterization of Xenopus PARN. RNA 7, 875–886.PubMedCrossRefGoogle Scholar
  45. 45.
    Dehlin E, Wormington M, Korner CG, Wahle E. (2000) Cap-dependent deadenylation of mRNA. EMBO J. 19, 1079–1086.PubMedCrossRefGoogle Scholar
  46. 46.
    Gao, M., Fritz, D. T., Ford, L. P. and Wilusz, J. (2000) Interaction between a poly(A)-specific ribonuclease and the 5′ cap influences mRNA deadenylation rates in vitro. Mol. Cell. 5, 479–488.PubMedCrossRefGoogle Scholar
  47. 47.
    Martinez, J., Ren, Y. G., Nilsson, P., Ehrenberg, M., and Virtanen, A. (2001) The mRNA cap structure stimulates rate of poly(A) removal and amplifies processivity of degradation. J. Biol Chem. 276, 2793–27929.CrossRefGoogle Scholar
  48. 48.
    Tucker, M., Valencia-Sanchez, M. A., Staples, R. R., Chen, J., Denis, C. L., and Parker, R. (2001) The transcription factor associated Ccr4 and caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377–386.PubMedCrossRefGoogle Scholar
  49. 49.
    Moser, M. J., Holley, W. R., Chatterjee, A., and Mian, S. (1997). The proofreading domain of escherichia coli DNA polymerase 1 and other DNA and/.or RNA exonuclease domains. Nucleic Acids Res. 25, 5110–5118.PubMedCrossRefGoogle Scholar
  50. 50.
    Albert, T. K., Lemaire, M., van Berkum, N. L., Gentz, R., Collart, M. A. and Timmers, H. T. M. (2000). Isolation and characterization of human orthologs of yeast CCR4-NOT complex subunits. Nucleic Acids Res. 28, 809–817.PubMedCrossRefGoogle Scholar
  51. 51.
    Bai, Y., Salvadore, C., Chiang, Y., Collart, M. A., Liu, H., and Denis, C. L. (1999). The CCR4 and CAF1 proteins of the CCRc4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Mol. Cell. Biol. 19, 6642–6651.PubMedGoogle Scholar
  52. 52.
    Chen, J., Rappsilber, J., Chiang, Y., Russel, P., Mann, M. and Denis, C.L. (2001) Purification and characterization of the 1.0 Mda CCR4-NOT complex identifies two novel components of the complex. J. Mol. Biol. 314, 683–694.PubMedCrossRefGoogle Scholar
  53. 53.
    Chen, J., Chiang, Y., and Denis, C. L. (2002). CCR4, a 3′−5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J. 21, 1414–1426.PubMedCrossRefGoogle Scholar
  54. 54.
    Tucker, M., Staples, R. R., Valencia-Sanchez, M. A., Muhlrad, D., and Parker, R. (2002). Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427–1436.PubMedCrossRefGoogle Scholar
  55. 55.
    Dupressoir, A., Morel, A., Barbot, W., Loireau, M., Corbo, L., and Heidmann, T. (2001). Identification of four families of yCCR4- and Mg2+-dependent endonuclease-related proteins in higher eukaryotes, and characterization of orthologs of yCCR4 with a conserved leucine rich repeat essential for hCAF1/hPOP2 binding. BMC Genomics 2, 1–14.CrossRefGoogle Scholar
  56. 56.
    Dlakic, M. (2000). Functionally unrelated signalling proteins contain fold similar to Mg2+-dependent endonucleases. Trends Biochem. Sci. 25, 272–273.PubMedCrossRefGoogle Scholar
  57. 57.
    Dupressoir, A., Barbot, W., Loireau, M., and Heidmann, T. (1999). Characterization of a mammalian gene related to the yeast CCR4 general transcription factor and revealed by transposon insertion. J. Biol. Chem. 274, 31068–31075.PubMedCrossRefGoogle Scholar
  58. 58.
    Wang, Y., Osterbur, D. L., Megaw, P. L., Tosini, G., Fukuhara, C., Green, C. B., et al. (2001) Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse. BMC Dev. Biol. 1, 9.PubMedCrossRefGoogle Scholar
  59. 59.
    Baggs, J. E. and Green, C. B. (2003). Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA. Curr. Biol. 13, 189–198.PubMedCrossRefGoogle Scholar
  60. 60.
    Fidler, C., Wainscoat, J. S., and Boultwood., J. (1999). The human POP2 gene: identification, sequencing, and mapping to the critical region of the 5q-syndrome. Genomics 56, 134–136.PubMedCrossRefGoogle Scholar
  61. 61.
    Daugeron, M., Mauxion, F., and Seraphin, B. (2001). The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Res. 29, 2448–2455.PubMedCrossRefGoogle Scholar
  62. 62.
    Thore, S., Mauxion, F., Seraphin, B., and Suck, D. (2003) Xray structure and activity of the yeast Pop2 protein: a nuclease subunit of the mRNA deadenylase complex. EMBO Rep. 4, 1150–1155.PubMedCrossRefGoogle Scholar
  63. 63.
    Prevot, D., Morel, A., Voeltzel, T., Rostan, M., Rimokh, R., Magaud, J., et al. (2001). Relationships of the antiproliferative proteins BTG1 and BTG2 with Caf1, the human homolog of a component of the yeast CCR4 transcriptional complex. J. Biol. Chem. 276, 9640–9648.PubMedCrossRefGoogle Scholar
  64. 64.
    Lai, W. S., Kennington, E. A., and Blackshear, P. J. (2003) Tristetraproline and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by, poly(A) ribonuclease. Mol. Cell. Biol 23, 3798–3812.PubMedCrossRefGoogle Scholar
  65. 65.
    Tucker, M., Valencia-Sanchez, M. A., Staples, R. R., Chen, J., Denis, C. L., Parker, R. (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377–386.PubMedCrossRefGoogle Scholar
  66. 66.
    He, F., Li, X., Spatnick, P., Casillo, R., Dong, S., and Jacobson, A. (2003) Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5′ to 3′ mRNA decay pathways in yeast. Mol. Cell 12, 1439–1452.PubMedCrossRefGoogle Scholar
  67. 67.
    Daugeron, M. C., Mauxion, F., and Seraphin, B. (2001) The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Res. 29, 2448–2455.PubMedCrossRefGoogle Scholar
  68. 68.
    Muhlrad, D., Decker, C. J., and Parker, R. (1994) Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′−>3′ duigestion of the transcript. Genes Dev. 8, 855–866.PubMedCrossRefGoogle Scholar
  69. 69.
    Hsu, C. L. and Stevens, A. (1993) Yeast cells lacking 5′−>3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell Biol. 13, 4826–4835.PubMedGoogle Scholar
  70. 70.
    Stevens, A., and Poole, T. L. (1995) 5′-exonuclease-2 of Saccharomyces cerevisiae. Puification and features of ribonuclease activity with comparison to 5′-exonuclease-1. J. Biol. Chem. 270, 1603–1609.Google Scholar
  71. 71.
    Stevens, A. (2001) 5′-exoribunoclease 1: Xrn1. Meth. Enzymol. 342, 251–259.PubMedCrossRefGoogle Scholar
  72. 72.
    Wagner, E. and Lykke-Andersen, J. (2002) mRNA surveillance: the perfect persist. J. Cell Sci. 115, 3033–3038.PubMedGoogle Scholar
  73. 73.
    Gonzalez, C. I., Bhattacharya, A., Wang, W., and Peltz, S. W. (2001) Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Gene 274, 15–25.PubMedCrossRefGoogle Scholar
  74. 74.
    Muhlrad, D. and Parker, R. (1994) Premature translational termination triggers mRNA decapping. Nature 370, 578–581.PubMedCrossRefGoogle Scholar
  75. 75.
    Hatfield, L., Beelman, C. A., Stevens, A., and Parker, R. (1996) Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 5830–5838.PubMedGoogle Scholar
  76. 76.
    He, F., Peltz, S. W., Donahue, J. L., Rosbash, M., and Jacobson, A. (1993) Stabilization and ribosome association of unspliced pre-mRNAs in a yeast upf1-mutant. Proc. Natl. Acad. Sci. U. S. A. 90, 7034–7038.PubMedCrossRefGoogle Scholar
  77. 77.
    Heikkinen, H. L., Llewellyn, S. A., and Barnes, C. A. (2003) Initiation-mediated mRNA decay in yeast affects heat-shock mRNAs, and works through decapping and 5′-to-3′ hydrolysis. Nucleic Acids Res. 31, 4006–4016.PubMedCrossRefGoogle Scholar
  78. 78.
    Amberg DC, Goldstein, AL, Cole CN. (1992) Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev. 6, 1173–1189.PubMedCrossRefGoogle Scholar
  79. 79.
    Johnson, A. W. (1997) Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol. Cell Biol. 17, 6122–6130.PubMedGoogle Scholar
  80. 80.
    Xue, Y., Bai, X., Lee, I., Kallstrom, G., Ho, J., Brown, J., et al. (2000) Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p. Mol. Cell. Biol. 20, 4006–4015.PubMedCrossRefGoogle Scholar
  81. 81.
    Qu, L. H., Henras, A., Lu, Y. J., Zhou, H., Zhou, W. X., Zhu, Y. Q., et al. (1999) Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast. Mol. Cell. Biol. 9, 1144–1158.Google Scholar
  82. 82.
    Henry, Y., Wood, H., Morrissey, J. P., Petfalski, E., Kearsey, S., and Tollervey, D. (1994) The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J. 13, 2452–2463.PubMedGoogle Scholar
  83. 83.
    He, F. and Jacobson, A. (2001) Upf1p, Nmd2p, and Upf3p regulate the decapping and exonucleolytic degradation of both nonsense-containing mRNAs and wild-type mRNAs. Mol. Cell. Biol. 21, 1515–1530.PubMedCrossRefGoogle Scholar
  84. 84.
    Poole, T. L. and Stevens, A. (1995) Comparison of features of the RNase activity of 5′-exonuclease-1 and 5′-exonuclease-2 of Saccharomyces cerevisiae. Nucleic Acids Symp. Ser. 33, 79–81.PubMedGoogle Scholar
  85. 85.
    Till, D. D., Linz, B., Seago, J. E., Elgar, S. J., Marujo, P. E., Elias, M. L., et al. (1998) Identification and developmental expression of a 5′-3′ exoribonuclease from Drosophila melanogaster. Mech. Dev. 79, 51–55.PubMedCrossRefGoogle Scholar
  86. 86.
    Bashkirov, V. I., Scherthan, H., Solinger, J. A., Buerstedde, J. M., Heyer, W. D. (1997) A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J. Cell. Biol. 136, 761–773.PubMedCrossRefGoogle Scholar
  87. 87.
    Liu, Z. and Gilbert, W. (1994) The yeast KEM1 gene encodes a nuclease specific for G4 tetraplex DNA: implication of in vivo functions for this novel DNA structure. Cell 77, 1083–1092.PubMedCrossRefGoogle Scholar
  88. 88.
    Tharun, S., He, W., Mayes, A. E., Lennertz, P., Beggs, J. D., and Parker, R. (2000) Yeast Sm-like proteins function in mRNA decapping and decay. Nature 404, 515–518.PubMedCrossRefGoogle Scholar
  89. 89.
    Bouveret, E., Rigaut, G., Shevchenko, A., Wilm, M., and Seraphin, B. (2000) A Sm-like protein complex that participates in mRNA degradation. EMBO J 19, 1661–1671.PubMedCrossRefGoogle Scholar
  90. 90.
    Fischer, N. and Weis, K. (2002) The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J. 21, 2788–2797.PubMedCrossRefGoogle Scholar
  91. 91.
    Ingelfinger, D., Arndt-Jovin, D. J., Luhrmann, R., and Achsel, T. (2002) The human LSm1–7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA 8, 1489–1501.PubMedGoogle Scholar
  92. 92.
    Sheth, U. and Parker, R. (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805–808.PubMedCrossRefGoogle Scholar
  93. 93.
    Kim, J. and Kim, J. (2002) KEM1 is involved in filamentous growth of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 216, 33–38.PubMedCrossRefGoogle Scholar
  94. 94.
    Fiorentini, P., Huang, K. N., Tishkoff, D. X., Kolodner, R. D., and Symington, L. S. (1997) Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro. Mol. Cell Biol. 17, 2764–2773.PubMedGoogle Scholar
  95. 95.
    Zhang, Z., Simons, A. M., Prabhu, V. P., and Chen, J. (1998) Strand exchange protein 1 (Sep 1) from Saccharomyces cerevisiae does not promote branch migration in vitro. J Biol Chem. 273, 4950–4956.PubMedCrossRefGoogle Scholar
  96. 96.
    Liu, Z., Lee, A., and Gilbert, W. (1995) Gene disruption of a G4-DNA-dependent nuclease in yeast leads to cellular senescence and telomere shortening. Proc. Natl. Acad. Sci. U. S. A. 92, 6002–6006.PubMedCrossRefGoogle Scholar
  97. 97.
    Solinger, J. A., Pascolini, D., and Heyer, W. D., (1999) Active-site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis. Mol. Cell. Biol. 19, 5930–5942.PubMedGoogle Scholar
  98. 98.
    Zhang, K., Dion, N., Fuchs, B., Damron, T., Gitelis, S., Irwin, R., et al. (2002) The human homolog of yeast SEP1 is a novel candidate tumor suppressor gene in osteogenic sarcoma. Gene 298, 121–127.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • David T. Fritz
    • 1
  • Naomi Bergman
    • 2
  • Walter J. Kilpatrick
    • 2
  • Carol J. Wilusz
    • 2
  • Jeffrey Wilusz
    • 2
  1. 1.Department of Biochemistry and Molecular BiologyUMDNJ-New Jersey Medical SchoolNewark
  2. 2.Department of Microbiology, Immunology and PathologyColorado State UniversityFort Collins

Personalised recommendations