Cell Biochemistry and Biophysics

, Volume 39, Issue 3, pp 279–292 | Cite as

The voltage-dependent anion channel

Characterization, modulation, and role in mitochondrial function in cell life and death
  • Varda Shoshan-BarmatzEmail author
  • Dan Gincel
Review Article


Recently, it has been recognized that there is a metabolic coupling between the cytosol and mitochondria, where the outer mitochondrial membrane (OMM), the boundary between these compartments, has important functions. In this crosstalk, mitochodrial Ca2+ homeostasis and ATP production and supply play a major role. The primary transporter of ions and metabolites across the OMM is the voltage-dependent anion channel (VDAC). The interaction of VDAC with Ca2+, ATP glutamate, NADH, and different proteins was demonstrated, and these interactions may regulate OMM permeability. This review includes information on VDAC purification methods, characterization of its channel activity (selectivity, voltage-dependence, conductance), and the regulation of VDAC channel by ligands, such as Ca2+, glutamate and ATP and touches on many aspects of the physiological relevance of VDAC to Ca2+ homeostasis and mitochondria-mediated apoptosis.

Index Entries

VDAC mitochondria porin glutamate Ca2+ homeostasis single channel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poyton, R. O. and McEwen, J. E. (1996) Crosstalk between nuclear and mitochondrial genomes. Ann. Rev. Biochem. 65, 563–607.PubMedCrossRefGoogle Scholar
  2. 2.
    Pozzan, T., Rizzuto, R., Volpe, P., and Meldolesi, J. (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol. Rev. 74, 595–636.PubMedGoogle Scholar
  3. 3.
    Rostovtseva, T. and Colombini, M. (1996) ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J. Biol. Chem. 271, 28006–28008.PubMedCrossRefGoogle Scholar
  4. 4.
    Rostovtseva, T. and Colombini, M. (1997) VDAC channels mediate and gate the flow of ATP: implications for regulation of mitochondrial function. Biophys. J. 72, 1954–1962.PubMedGoogle Scholar
  5. 5.
    Hodge, T. and Colombini, M. (1997) Regulation of metabolite flux through voltage-gating of VDAC channels. J. Memb. Biol. 157, 271–279.CrossRefGoogle Scholar
  6. 6.
    Zizi, M., Byrd, C., Boxus, R., and Colombini, M. (1998) The voltage-gating process of the voltage-dependent anion channel is sensitive to ion flow. Biophys. J. 75, 704–713.PubMedGoogle Scholar
  7. 7.
    Colombini, M. (1994) Anion channel in the mitochondrial outer membrane. Curr. Topics Membrane 42, 73–101.Google Scholar
  8. 8.
    Benz, R. (1994) Permeation of hydrophilic solutes through mitochondrial outer membranes porins. Biochim. Biophys. Acta 1197, 167–196.PubMedGoogle Scholar
  9. 9.
    Colombini, M. (1989) Voltage gating in the mitochondria channel, VDAC. J. Membr. Biol. 111, 103–111.PubMedCrossRefGoogle Scholar
  10. 10.
    Crompton, M. (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233–249.PubMedCrossRefGoogle Scholar
  11. 11.
    Green, D. R. and Reed, J. C. (1998) Mitochondria and apoptosis. Science 281, 1309–1312.PubMedCrossRefGoogle Scholar
  12. 12.
    Halestrap, A. P., Doran, E., Gillespie, J. P., and O'Toole, A. (2000) Mitochondria and cell death. Biochem. Soc. Trans. 28, 170–177.PubMedGoogle Scholar
  13. 13.
    Zoratti, M. and Szabo, I. (1995) The mitochondrial permeability transition. Biochim. Biophys. Acta 1241, 139–176.PubMedGoogle Scholar
  14. 14.
    Szabo, I., De Pinto, V., and Zoratti, M. (1993) The mitochondrial permeability transition pore may comprise VDAC molecules. II. The electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel. FEBS Lett. 330, 201–204 and 206–210.PubMedCrossRefGoogle Scholar
  15. 15.
    Haworth, R. A. and Hunter, D. R. (1980) Allosteric inhibition of the Ca2+-activated hydrophilic channel of the mitochondrial inner membrane by nucleotides. J. Membr. Biol. 54, 231–236.PubMedCrossRefGoogle Scholar
  16. 16.
    Tsujimoto, Y. and Shimizu, S. (2002) The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84, 187–193.PubMedCrossRefGoogle Scholar
  17. 17.
    Vander Heiden, M. G., Li, X. X., Gottleib, E., Hill, R. B., Thompson, C. B., and Colombini, M. (2001) Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J. Biol. Chem. 276, 19414–19419.CrossRefGoogle Scholar
  18. 18.
    Shimizu, S., Ide, T., Yanagida, T., and Tsujimoto, Y. (2000) Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J. Biol. Chem. 275, 12321–12325.PubMedCrossRefGoogle Scholar
  19. 19.
    Shimizu, S., Konishi, A., Kodama, T., and Tsujimoto, Y. (2000) BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natal. Acad. Sci. USA 97, 3100–3105.CrossRefGoogle Scholar
  20. 20.
    Shimizu, S., Narita, M., and Tsujimoto, Y. (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487.PubMedCrossRefGoogle Scholar
  21. 21.
    Blachly-Dyson, E., Zambronicz, E. B., Yu, W. H., Adams, V., McCabe, E. R., Adelman, J., Colombini, M., and Forte, M. (1993) Cloning and functional expression in yeast of two human isoforms of the outer mitochondrial membrane channel, the voltage-dependent anion channel. J. Biol. Chem. 268, 1835–1841.PubMedGoogle Scholar
  22. 22.
    Rahmani, Z., Maunoury, C., and Siddiqui, A. (1998) Isolation of a novel human voltage-dependent anion channel gene. Eur. J. Hum. Genet. 6, 337–340.PubMedCrossRefGoogle Scholar
  23. 23.
    Ha, H., Jajek, P., Bedwell, D. M., and Burrows, P. D. (1993) A mitochondrial porin cDNA predicts the existence of multiple human porins. J. Biol. Chem. 268, 12143–12149.PubMedGoogle Scholar
  24. 24.
    Reymann, S., Flarke, H., Heiden, M., Jakob, C., Stadtm, ller, U., et al. (1995) Further evidence for multitological localization of mammalian porin (VDAC) in the plasmalemma forming part of a chloride channel complex affected in cystic fibrosis and encephalomyopathy. Biochem. Mol. Med. 54, 75–87.PubMedCrossRefGoogle Scholar
  25. 25.
    Song, J., Midson, C., Blachly-Dyson, E., Forte, M., and Colombini, M. (1998) The topology of VDAC as probed by biotin modification. J. Biol. Chem. 273, 24406–24413.PubMedCrossRefGoogle Scholar
  26. 26.
    Blachly-Dyson, E., Peng, S., Colombini, M., and Forte, M. (1990) Selectivity Changes in Site-Directed Mutants of the VDAC Ion Channel: Structural Implications. Science 247, 1233–1236.PubMedCrossRefGoogle Scholar
  27. 27.
    Thomas, L., Blachly-Dyson, E., Colombini, M., and Forte, M. (1993) Mapping of residues forming the voltage sensor of the voltage-dependent anion-selective channel. Proc. Natl. Acad. Sci. USA 90, 5446–5449.PubMedCrossRefGoogle Scholar
  28. 28.
    Colombini, M., Yeang, C. L., Tung, J., and Koeing, T. (1987) The mitochondrial outer membrane channel, VDAC, is regulated by a synthetic polyanion. Biochim. Biophys. Acta 905, 279–286.PubMedCrossRefGoogle Scholar
  29. 29.
    Mannella, C. A., Forte, M., and Colombini, M. (1992) Toward the molecular structure of the mitochondrial channel, VDAC. J. Bioenerg. Biomembr. 24, 7–19.PubMedCrossRefGoogle Scholar
  30. 30.
    Guo, X. W. and Mannella, C. A. (1993) Conformational change in the mitochondrial channel, VDAC, detected by electron cryomicroscopy. Biophys. J. 64, 545–549.PubMedGoogle Scholar
  31. 31.
    Peng, S., Blachly-Dyson, E., Forte, M., and Colombini, M. (1992) Large scale rearrangement of protein domains is associated with voltage gating of the VDAC channel. Biophys J. 62, 123–131.PubMedGoogle Scholar
  32. 32.
    Thinnes, F. P. (1992) Evidence for extra mitochondrial localization of the VDAC/porin channel in eucaryotic cells. J. Bioenerg. Biomemb. 24, 71–75.CrossRefGoogle Scholar
  33. 33.
    Bureau, M. H., Khrestchatisky, M., Heeren, M., Zambrowicz, E. B., Kim, H., Grisar, T. H., Colombini, M., Tobin, A. J., and Olsen, R. W. (1992) Isolation and cloning of the voltage-dependent anion channel-like Mr. 36,000 polypeptide from mammalian brain. J. Biol. Chem. 267, 8679–8684.PubMedGoogle Scholar
  34. 34.
    Shoshan-Barmatz, V., Hadad, N., Feng, W., Shafir, I., Orr, I., Varsanyi, M., and Heilmeyer, L. M. (1996) VDAC/porin is present in sarcoplasmic reticulum from skeletal muscle. FEBS Lett. 386, 205–210.PubMedCrossRefGoogle Scholar
  35. 35.
    Jurgens, L., Kleineke, J., Brdiczka, D., Thinnes, F. P., and Hilschmann, N. (1995) Localization of type-1 porin channel (VDAC) in the sarcoplasmatic reticulum. Biol. Chem. Hoppe. Seyler. 376, 685–689.PubMedGoogle Scholar
  36. 36.
    Bathori, G., Parolini, G., Tombola, I., Szabo, F., Messina, I., Oliva, A., De Pinto, M., Lisanti, V., Sargiacomo, M., and Zoratti, M. (1999) Porin is present in the plasma membrane where it is concentrated in caveolae and caveolae-related domains. J. Biol. Chem. 274, 29607–29612.PubMedCrossRefGoogle Scholar
  37. 37.
    Yu, W. H. and Forte, M. (1996) Is there VDAC in cell compartment other than mitochondria? J. Bioenerg. Biomemb. 28, 93–100.CrossRefGoogle Scholar
  38. 38.
    Gincel, D., Zaid, H., and Shoshan-Barmatz, V. (2001) Calcium binding and translocation by voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem. J. 358, 147–155.PubMedCrossRefGoogle Scholar
  39. 39.
    Gincel, D., Silberberg, S. D., and Shoshan-Barmatz, V. (2000) Modulation of the voltage-dependent anion channel (VDAC) by glutamate. J. Bioenerg. Biomembr. 32, 571–583.PubMedCrossRefGoogle Scholar
  40. 40.
    Shafir, I., Feng, W., and Shoshan-Barmatz, V. (1998) Voltage-dependent anion channel proteins in synaptosomes of the torpedo electric organ: immunolocalization, purification, and characterization. J. Bioenerg. Biomemb. 30, 499–510.CrossRefGoogle Scholar
  41. 41.
    Gincel, D., Vardi, N., and Shoshan-Barmatz, V. (2002) Retinal Voltage-Dependent Anion Channel (VDAC): Characterization and cellular localization. Invest. Ophthalmology & Visual Science 43, 2097–2104.Google Scholar
  42. 42.
    Benz, R., Kottke, M., and Brdiczka, D. (1990) The cationically selective state of the mitochondrial outer membrane pore: a study with intact mitochondria and reconstituted mitochondrial porin. Biochim. Biophys. Acta 1022, 311–318.PubMedCrossRefGoogle Scholar
  43. 43.
    Gunter, K. K. and Gunter, T. E. (1994) Transport of calcium by mitochondria. J. Bioenerg, Biomembr. 26, 741–485.Google Scholar
  44. 44.
    Gunter, T. E., Gunter, K. K., Sheu, S. S., and Gavin, C. E. (1994) Mitochondrial calcium transport: physiological and pathological relevance. Am. J. Physiol. 267, C313-C339.PubMedGoogle Scholar
  45. 45.
    Denton, R. M. and McCormack, J. G. (1990) Ca2+ as a second messanger within mitochondria of the heart and other tissues. Annu. Rev. Physiol. 52, 451–466.PubMedCrossRefGoogle Scholar
  46. 46.
    Di-Lisa, F., Gambassi, G., Spurgeon, H., and Hansford, R. G. (1993) Intramitochondrial free calcium in cardiac myocytes in relation to dehydrogenase activation. Cardiovasc. Res. 2, 1840–1844.CrossRefGoogle Scholar
  47. 47.
    Bootman, M., Niggli, E., Berridge, M., and Lipp, P. (1997) Imagining the hierarchical calcium sig-nalling system in HeLa cells. J. Physiol (London) 499, 30–314.Google Scholar
  48. 48.
    Kroemer, G., Zamzami, N., and Susin, S. A. (1997) Mitochondrial control of apoptosis. Immunol. Today 18, 44–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Gunter, T. E., Buntinas, L., Sparagna, G. C., and Gunter, K. K. (1998) The Ca2+ transport mechanisms of mitochondria and Ca2+ uptake from physiological-type Ca2+ transients. Biochim. Biophys. Acta 1366, 5–15.PubMedCrossRefGoogle Scholar
  50. 50.
    Beutner, C., Ruck, A., Riede, B., and Brdiczka, D. (1998) Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim. Biophys. Acta 1368, 7–18.PubMedCrossRefGoogle Scholar
  51. 51.
    Linden, M. and Karlsson, G. (1996) Identification of porin as a binding site for MAP2. Biochem. Biophys. Res. Commun. 218, 833–836.PubMedCrossRefGoogle Scholar
  52. 52.
    McEnery, M. W. (1992) The mitochondrial benzodiazepine receptor: evidence for association with the voltage-dependent anion channel (VDAC). J. Bioenerg. Biomembr. 24, 63–69.PubMedCrossRefGoogle Scholar
  53. 53.
    Mannella, C. A., Ribeiro, A. J., and Frank J. (1987) Cytochrome c binds to lipid domains in arrays of mitochondrial outer membrane channels. Biophys. J. 51, 221–226.PubMedGoogle Scholar
  54. 54.
    Shimizu, S., Matsuoka, Y., Shinohara, Y., Yoneda, Y., and Tsujimoto, Y. (2001) Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J. Cell. Biol. 152, 237–250.PubMedCrossRefGoogle Scholar
  55. 55.
    Mangan, P. S. and Colombini, M. (1987) Ultrasteep voltage dependence in a membrane channel. Proc. Natl. Acad. Sci. USA 84, 4896–4900.PubMedCrossRefGoogle Scholar
  56. 56.
    Reumann, S., Maier, E., Heldt, H. W., and Benz, R. (1998) Permeability properties of the porin of spinach leaf peroxisomes. Eur. J. Biochem. 251, 359–366.PubMedCrossRefGoogle Scholar
  57. 57.
    Hadad, N., Abramson, J. J., Zable, T., and Shoshan-Barmatz, V. (1994) Ca2+ binding sites of the ryanodine receptor/Ca2+ release channel of sarcoplasmic reticulum. Low affinity binding site(s) as probed by terbium fluorescence. J. Biol. Chem. 269, 24862–24869.Google Scholar
  58. 58.
    Zhang, D. W. and Colombini, M. (1989) Inhibition by aluminum hydroxide of the voltage-dependent closure of the mitochondrial channel, VDAC. Biochim. Biophys. Acta 991, 68–78.PubMedGoogle Scholar
  59. 59.
    Charuk, J. H., Pirraglia, C. A., and Reithmeier, R. A. (1990) Interaction of ruthernium red with Ca2+-binding proteins. Anal. Biochem. 188, 123–131.PubMedCrossRefGoogle Scholar
  60. 60.
    Gregersen, H. J., Heizmann, C. W., Kaegi, U., and Celio, M. R. (1990) Ca2+-dependent mobility shift of parvalbumin in one- and two-dimensional gel electrophoresis. Adv. Exp. Med. Biol. 269, 89–91.PubMedGoogle Scholar
  61. 61.
    De Pinto, V., Aljamal, J. A., and Palmier, F. (1993) Location of the dicyclohexylcarbodiimide-reactive glutamate residue in the bovine heart mitochondrial porin. J. Biol. Chem. 268, 12977–12982.PubMedGoogle Scholar
  62. 62.
    Shafir, I., Feng, W., and Shoshan-Barmatz, V. (1998) Dicyclohexylcarbodiimide interaction with the voltage-dependent anion channel from sarcoplasmic reticulum. Eur. J. Biochem. 253, 627–636.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang, D. W. and Colombini, M. (1990) Group IIIA-metal hydroxides indirectly neutralize the voltage sensor of the voltage-dependent mitochondrial channel, VDAC, by interacting with a dynamic binding site. Biochim. Biophys. Acta 1025, 127–134.PubMedCrossRefGoogle Scholar
  64. 64.
    Bathori, G., Fonyo, A., and Ligeti, E. (1995) Trace amounts of Triton X-100 modify the inhibitor sensitivity of the mitochondrial porin. Biochim. Biophys. Acta 1234, 249–254.PubMedCrossRefGoogle Scholar
  65. 65.
    Florke, H., Thinnes, F. P., Winkelbach, H., Stadtmuller, U., Paetzold, G., Morys-Wortmann, C., Hesse, D., Sternbach, H., Zimmermann, B., and Kaufmann-Kolle, P. (1994) Channel active mammalian porin, purified from crude membrane fractions of human B lymphocytes and bovine skeletal muscle, reversibly binds adenosine triphosphate (ATP). Biol. Chem. Hoppe. Seyler. 375, 513–520.PubMedGoogle Scholar
  66. 66.
    Rostovtseva, T. and Bezrukov, S. M. (1998) ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophys. J. 74, 2365–2373.PubMedGoogle Scholar
  67. 67.
    Rostovtseva, T. K., Komarov, A., Bezrukov, S. M., and Colombini, M. (2002) Dynamics of nucleotides in VDAC channels: structure-specific noise generation. Biophys. J. 82, 193–205.PubMedCrossRefGoogle Scholar
  68. 68.
    Yehezkel, G., Hadad, N., Zaid, H. Sivan, S., and Shoshan-Barmatz, V. (2003), ATP binding sites in VDAC: characterization and location (submitted).Google Scholar
  69. 69.
    Horn, A., Reymann, S., and Thinnes, F. P. (1998) Studies on human porin. XVI: Polyamines reduce the voltage dependence of human VDAC in planar lipid bilayers—spermine and spermidine inducing asymmetric voltage, gating on the channel. Mol. Genet. Metab. 63, 239–242.PubMedCrossRefGoogle Scholar
  70. 70.
    Siadat, S., Reymann, S., Horn, A., and Thinnes, F. P. (1998) Studies on human porin XVIII: the multicompartment effector ruthenium red reduces the voltage dependence of human VDAC in planar lipid bilayers. Mol. Genet. Metab. 65, 246–249.PubMedCrossRefGoogle Scholar
  71. 71.
    Zizi, M., Forte, M., Blachly-Dyson, E., and Colombini, M. (1994) NADH regulate the gating of VDAC the mitochondrial outer membrane channel. J. Biol. Chem. 269, 1614–1616.PubMedGoogle Scholar
  72. 72.
    Lee, A., Zizi, M., and Colombini, M. (1994) Beta-NADH decreases the permeability of the mitochondrial outer membrane to ADP by a factor of 6. J. Biol. Chem. 269, 30974–30980.PubMedGoogle Scholar
  73. 73.
    Zamzami, N. and Kroemer, G. (2001) The mitochondrion in apoptosis: how Pandora's box opens. Nat. Rev. Mol. Cell Biol. 2, 67–71.PubMedCrossRefGoogle Scholar
  74. 74.
    Ichas, F. and Mazat, J.-P. (1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to hing-conductance state. Biochim. Biophys. Acta 1366, 33–50.PubMedCrossRefGoogle Scholar
  75. 75.
    Liu, X., Kim, C. N., Yang, R., Jemmerson, R., and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157.PubMedCrossRefGoogle Scholar
  76. 76.
    Woodfield, K., Ruck, A., Brdiczka, D., and Halestrap, A. P. (1998) Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem. J. 336, 287–290.PubMedGoogle Scholar
  77. 77.
    Haworth, R. A. and Hunter, D. R. (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch. Biochem. Biophys. 195, 460–467.PubMedCrossRefGoogle Scholar
  78. 78.
    Adams, J. M. and Cory, S. (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281, 322–1326.CrossRefGoogle Scholar
  79. 79.
    Wudarczyk, J., Debska, G., and Lenartowicz, E. (1999) Zinc as an inducer of the membrane permeability transition in rat liver mitochondria. Arch. Biochem. Biophys. 363, 1–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Selwyn, M. J., Ng, L. T., and Choo, H. L. (1993) The pH-dependent anion-conducting channel of the mitochondrial inner membrane is potently inhibited by zinc ions. FEBS Lett. 331, 129–133.PubMedCrossRefGoogle Scholar
  81. 81.
    Novgorodov, S. A., Gudz, T. I., Milgrom, Y. M., and Brierley, G. P. (1992) The permeability transition in heart mitochondria is regulated synergistically by ADP and cyclosporin A. J. Biol. Chem. 267, 16274–16282.PubMedGoogle Scholar
  82. 82.
    Bernardi, P., Veronese, P., and Petronilli, V. (1993) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. I. Evidence for two separate Me2+ binding sites with opposing effects on the pore open probability. J. Biol. Chem. 268, 1005–1010.PubMedGoogle Scholar
  83. 83.
    Brustovesky, N. and Klingenberg, M. (1996) Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry 35, 8483–8488.CrossRefGoogle Scholar
  84. 84.
    Beutner, C., Ruck, A., Riede, B., Welte, W., and Brdiczka, D. (1996) Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett. 396, 189–195.PubMedCrossRefGoogle Scholar
  85. 85.
    Marzo, I., Brenner, C., Zamzami, N., Susin, S. A. Beutner, G., Brdiczka, D., et al. (1998) The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J. Exp. Med. 187, 1261–1271.PubMedCrossRefGoogle Scholar
  86. 86.
    Perez-Velazauez, J. L., Frantseva, M. V., Huzar, D. V., and Carlen, P. L. (2000) Mitochondrial porin required for ischemia-induced mitochondrial dysfunction and neuronal damage. NeuroScience 97, 363–369.CrossRefGoogle Scholar
  87. 87.
    Kruman, I. I. and Mattson, M. P. (1999) Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J. Neurochem. 72, 529–540.PubMedCrossRefGoogle Scholar
  88. 88.
    Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T. (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262, 744–747.PubMedCrossRefGoogle Scholar
  89. 89.
    Robb-Gaspers, L. D., Rutter, G. A., Burnett, P., Hajnoczky, G., Denton, R. M., and Thomas, A. P. (1998) Coupling between cytosolic and mitochondrial calcium oscillations: role in the regulation of hepatic metabolism. Biochim. Biophys. Acta 1366, 17–32.PubMedCrossRefGoogle Scholar
  90. 90.
    Csordas, G., Madesh M., Antonsson, B., and Hajnoczky, G. (2002) teBid promotes Ca2+ signal propagation to the mitochondria: control of Ca2+ permeation through the outer mitochondrial membrane. EMBO J. 21, 2198–2206.PubMedCrossRefGoogle Scholar
  91. 91.
    Rapizzi, E., Pinton, P., Szabadkai, G., Wieckowski, M. R., Vandecasteele, G., Baird, G., et al. (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J. Cell. Biol. 159, 613–624.PubMedCrossRefGoogle Scholar
  92. 92.
    Lemasters, J. J., Qian, T., Bradham, C. A. Brenner, D. A., Cascio, W. E., Trost, L. C., et al. (1999) Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J. Bioenerg. Biomemb. 31, 305–319.CrossRefGoogle Scholar
  93. 93.
    Wallace, D. C. (1999) Mitochondrial diseases in man and mouse. Science 283, 1482–1488.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  1. 1.Department of Life SciencesBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations