Cell Biochemistry and Biophysics

, Volume 39, Issue 2, pp 163–173 | Cite as

Mechanism of action of moderate-intensity static magnetic fields on biological systems

Review Article

Abstract

There is substantial evidence indicating that moderate-intensity static magnetic fields (SMF) are capable of influencing a number of biological systems, particularly those whose function is closely linked to the properties of membrane channels. Most of the reported moderate SMF effects may be explained on the basis of alterations in membrane calcium ion flux. The mechanism suggested to explain these effects is based on the diamagnetic anisitropic properties of membrane phospholipids. It is proposed that reorientation of these molecules during moderate SMF exposure will result in the deformation of imbedded ion channels, thereby altering their activation kinetics. Channel inactivation would not be expected to be influenced by these fields because this mechanism is not located within the intramembraneous portion of the channel. Patch-clamp studies of calcium channels have provided support for this hypothesis, as well as demonstrating a temperature dependency that is understandable on the basis of the membrane thermotropic phase transition. Additional studies have demonstrated that sodium channels are similarly affected by SMFs, although to a lesser degree. These findings support the view that moderate SMF effects on biological membranes represent a general phenomenon, with some channels being more susceptible than others to membrane deformation.

Index Entries

Static magnetic fields diamagnetism ion channels thermotropic phase transition GH3 cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Denegre, J. M., Valles, J. M., Jr., Lin, K., Jordan, W. B., and Mowry, K. L. (1998) Cleavage planes in frog eggs altered by strong magnetic fields. Proc. Natl. Acad. Sci. USA 95, 14729–14732.PubMedCrossRefGoogle Scholar
  2. 2.
    Kale, P. G. and Baum, J. W. (1979) Genetic effects of strong magnetic fields in Drosophila melanogaster; homogeneous fields ranging from 13,000 to 37,000 gauss. Environ. Mutagen. 1, 371–374.PubMedCrossRefGoogle Scholar
  3. 3.
    Beischer, D. E. and Knepton, J. C. The electroencephalogram of the squirrel monkey (Saimiri sciureus) in a very high magnetic field, in NAMI Rep. 972. Naval Aerospace Medical Institute, Pensacola, FL, 1966.Google Scholar
  4. 4.
    Thach, J. S. A behavioral effect of intense dc electromagnetic fields, in Use of Nonhuman Primates in Drug Evaluation (Vagthorg, H., ed.). Univ. of Texas Press, Austin, pp. 347–356, 1968.Google Scholar
  5. 5.
    Barnothy, J. M., Barnothy, M. F. and Boszormenyi-Nagy, I. (1956) Influence of a magnetic field upon the leukocytes of the mouse. Nature (London) 181, 1785–1786.CrossRefGoogle Scholar
  6. 6.
    Eiselein, B. S., Boutell, H. M., and Biggs, W. (1961) Biological effects of magnetic fields— negative results. Aerosp. Med. 32, 383–386.PubMedGoogle Scholar
  7. 7.
    Young, W. and Gofman, J. W. Magnetic fields, vagal inhibition and acetylcholinesterase activity, in UCRL Rep. 12389. Lawrence Livermore Laboratory, Livermore, CA, 1965.Google Scholar
  8. 8.
    Gaffey, C. T. and Tenforde, T. S. (1981). Alterations in the rat electrocardiogram induced by stationary magnetic fields. Biolectromagnetics 2, 357–370.CrossRefGoogle Scholar
  9. 9.
    Nahas, G. G., Boccalon, H., Berryer, P., and Wagner, B. (1975) Effects in rodents of a one-month exposure to magnetic fields (200–1200 Gauss). Aviat. Space Environ. Med. 46, 1161–1163.PubMedGoogle Scholar
  10. 10.
    Strand, J. A., Abernethy, C. S., Skalski, J. R., and Genoway, R. G. (1983) Effects of magnetic field exposure on fertilization success in rainbow trout, Salmo gairdneri. Bioelectromagnetics 4, 295–301.PubMedCrossRefGoogle Scholar
  11. 11.
    Brewer, H. B. (1979) Some preliminary studies on the effects of a static magnetic field on the life cycle of Lebistes reticulates (guppy). Biophys. J. 28, 305–314.PubMedGoogle Scholar
  12. 12.
    Mild, K. H., Sandstrom, M., and Lovtrup, S. (1981) Development of Xenopus embryos in a static magnetic field. Bioelectromagnetics 2, 199–201.PubMedCrossRefGoogle Scholar
  13. 13.
    Kholodov, Y. A. Influence of magnetic fields on biological objects. NTIS Rep. JPRS 63038. Natl. Tech. Info. Serv., Springfield, VA, 1974.Google Scholar
  14. 14.
    Klimovskaya, L. D. and Smirnova, N. P. (1976) Changes in brain evoked potentials under the influence of a permanent magnet field. Bull. Exp. Biol. Med. 82, 1125–1129.CrossRefGoogle Scholar
  15. 15.
    Rosen, A. D. and Lubowsky, J. (1987) Magnetic field influence on central nervous system function. Exp. Neurol. 95, 679–687.PubMedCrossRefGoogle Scholar
  16. 16.
    Nakagawa, M. and Matsuda, Y. (1988) A strong static magnetic field alters operant responding in rats. Bioelectromagnetics 9, 25–37.PubMedCrossRefGoogle Scholar
  17. 17.
    Hong, C., Huestis, P., Thompson, R., and Yu, J. (1988) Learning ability of young rats in unaffected by repeated exposure to a static electromagnetic field in early life. Bioelectromagnetics 9, 269–273.PubMedCrossRefGoogle Scholar
  18. 18.
    Azanza, M. J. and Del Moral, A. (1984) Cell membrane biochemistry and neurobiological approach to biomagnetism. Prog. Neurobiol. 44, 517–601.CrossRefGoogle Scholar
  19. 19.
    Roberts, A. M. (1970) Motion of Paramecium in static electric and magnetic fields. J. Theor. Biol. 27, 97–106.PubMedCrossRefGoogle Scholar
  20. 20.
    Rosen, M. S. and Rosen, A. D. (1990) Magnetic field influence on Paramecium motility. Life Sci. 46, 1509–1515.PubMedCrossRefGoogle Scholar
  21. 21.
    Eckert, R. (1972) Bioelectric control of ciliary activity. Science 176, 473–481.PubMedCrossRefGoogle Scholar
  22. 22.
    Browning, J. L., Nelson, D. D., and Hasma, H. G. (1976) Ca2+ influx across the excitable membrane of behavioral mutants of Paramecium. Nature 259, 491–494.PubMedCrossRefGoogle Scholar
  23. 23.
    Rosen, A. D. and Vastola, E. F. (1966) Unit signs of visual cortex modulation by the lateral geniculate body. EEG Clin. Neurophys. 20, 38–43.CrossRefGoogle Scholar
  24. 24.
    Rosen, A. D. and Lubowsky, J. (1990) Modification of spontaneous unit discharge in the lateral geniculate body by a magnetic field. Exp. Neurol. 108, 261–265.PubMedCrossRefGoogle Scholar
  25. 25.
    Wikswo, J. P. and Barach, J. P. (1980) An estimate of the steady magnetic field strength required to influence nerve conduction. IEEE Trans. Biomed. Eng. 27, 722–724.PubMedCrossRefGoogle Scholar
  26. 26.
    Katz, B. and Miledi, R. (1965) The effect of calcium on acetylcholine release from motor nerve terminals. Proc. R. Soc. Lond. B. 161, 496–503.PubMedGoogle Scholar
  27. 27.
    Rosen, A. D. (1992) Magnetic field influence on acetylcholine release at the neuromuscular junction. Am. J. Physiol. (Cell Physiol. 31) 262, C1418-C1422.Google Scholar
  28. 28.
    Rosen, A. D. (1992) Membrane response to static magnetic fields: Effect of exposure duration. Biochim. Biophys. Acta 1148, 317–320.Google Scholar
  29. 29.
    Rosen, A. D. (1994) Threshold and limits of magnetic field action at the presynaptic membrane. Biochim. Biophys. Acta 1193, 62–66.PubMedCrossRefGoogle Scholar
  30. 30.
    Rosen, A. D. (1996) Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim. Biophys. Acta 1282, 149–155.PubMedCrossRefGoogle Scholar
  31. 31.
    Matteson, D. R. and Armstrong, C. M. (1986) Properties of two types of calcium channels in clonal pituitary cells. J. Gen. Physiol. 87, 161–182.PubMedCrossRefGoogle Scholar
  32. 32.
    Matteson, D. R. and Armstrong, C. M. (1984) Na and Ca channels in a transformed line of anterior pituitary cells. J. Gen. Physiol. 83, 371–394.PubMedCrossRefGoogle Scholar
  33. 33.
    Rosen, A. D. (2003) Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics, in press.Google Scholar
  34. 34.
    Worcester, D. L. (1978) Structural origins of diamagnetic anisotropy in proteins. Proc. Natl. Acad. Sci. USA 75, 5475–5477.PubMedCrossRefGoogle Scholar
  35. 35.
    Vassilev, P. M., Dronzine, R. T., Vassileva, M. P., and Georgiev, G. A. (1982) Parallel arrays of microtubules formed in electric and magnetic fields. Biosci. Rep. 2, 1025–1029.PubMedCrossRefGoogle Scholar
  36. 36.
    Bras, W., Diakun, G. P., Diaz, J. F., Maret, G., Kramer, H., Bordas, J., and Medrano, F. J. (1998) The susceptibility of pure tubulin to high magnetic fields: A magnetic birefringence and X-ray fiber diffraction study. Biophys. J. 74, 1509–1521.PubMedGoogle Scholar
  37. 37.
    Valles, J. M., Jr. (2002) Model of magnetic field-induced mitotic apparatus reorientation in frog eggs. Biophys. J. 82, 1260–1265.PubMedGoogle Scholar
  38. 38.
    Maret, G. and Dransfeld, K. (1977) Macromolecules and membranes in high magnetic fields. Physica 86B, 1077–1083.Google Scholar
  39. 39.
    Hong, F. T., Mauzerall, D., and Mauro, A. (1971) Magnetic anisotropy and the orientation of retinal rods in a homogeneous magnetic field. Proc. Natl. Acad. Sci. USA 68, 1283–1285.PubMedCrossRefGoogle Scholar
  40. 40.
    Geacintov, N. E., Van Norstrand, F., Pope, M., and Tinkel, J. B. (1971) Magnetic field effect on the chlorophyll fluorescence in Chlorella. Biochim. Biophys. Acta 226, 486–491.PubMedCrossRefGoogle Scholar
  41. 41.
    Boroske, E., and Helfrich, W. (1978) Magnetic anisotropy of egg lecithin membranes. Biophys. J. 24, 863–868.PubMedGoogle Scholar
  42. 42.
    Speyer, J. B., Sripada, P. K., Das Gupta, S. K., and Shipley, G. G. (1987) Magnetic orientation of sphingomyelin-lecithin bilayers. Biophys. J. 51, 687–691.PubMedCrossRefGoogle Scholar
  43. 43.
    Tenforde, T. S. (1988) Magnetic deformation of phospholipid bilayers: Effects of liposome shape and solute permeability at prephase transition temperature. J. Theor. Biol. 133, 385–396.CrossRefGoogle Scholar
  44. 44.
    Carraway, K. L. and Carraway, C. A. C. (1989) Membrane-cytoskeleton interactions in animal cells. Biochim. Biophys. Acta 988, 147–171.PubMedGoogle Scholar
  45. 45.
    Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S. and Numa, S. (1989) Primary structure and functional expression in the cardiac dihydropyridine-sensitive calcium channel. Nature 340, 230–233.PubMedCrossRefGoogle Scholar
  46. 46.
    Perez-Reyes, E., Wei, X., Castellano, A., and Birnbaumer, L. (1990) Molecular diversity of L-type calcium channels. J. Biol. Chem. 265, 20430–20436.PubMedGoogle Scholar
  47. 47.
    Soong, T. W., Stea, A., Hodson, C. D., Dubel, S. J., Vincent, S. R., and Snutch, T. P. (1993) Structure and functional expression in a member of the low voltage-activated calcium channel family. Science 260, 1133–1136.PubMedCrossRefGoogle Scholar
  48. 48.
    Obejero-Paz, C. A., Jones, S. W., and Scarpa, A. (1991) Calcium currents in the A7r5 smooth muscle-derived cell line. Increase in current and selective removal of voltage-dependent inactivation by intracellular trypsin. J. Gen. Physiol. 98, 1127–1140.PubMedCrossRefGoogle Scholar
  49. 49.
    Armstrong, C. M. and Bezanilla, F. (1977) Inactivation of the sodium channel. II. Gating current experiments. J. Gen Physiol. 70, 567–590.PubMedCrossRefGoogle Scholar
  50. 50.
    Yue, D. T., Backx, P. H., and Imredy, J. P. (1990) Calcium-sensitive inactivation in the gating of single calcium channels. Science 250, 1735–1738.PubMedCrossRefGoogle Scholar
  51. 51.
    Welling, A., Bosse, E., Caualie, A., Bottlender, R., Ludwig, A., Nastainczyk, W., Flockerzi, V., and Hoffmann, F. (1993) Stable co-expression of calcium channel α1, β β, and α1/δ subunits in a somatic cell line. J. Physiol. 471, 749–765.PubMedGoogle Scholar
  52. 52.
    McElhaney, R. N. (1986) Differential scanning calorimetric studies of lipid-protein interaction in model membrane systems. Biochim. Biophys. Acta 864, 361–421.PubMedGoogle Scholar
  53. 53.
    Unwin, N. (1995) Acetylcholine receptor-channel imaged in the open state. Nature 373, 37–43.PubMedCrossRefGoogle Scholar
  54. 54.
    Wilson, G. G. and Karlin, A. (1998) The location of the gate in the acetylcholine receptor channel. Neuron 20, 1269–1281.PubMedCrossRefGoogle Scholar
  55. 55.
    Steiner, U. E. and Ulrich, T. (1989) Magnetic field effects in chemical reactions and related phenomena. Chem. Rev. 89, 51–147.CrossRefGoogle Scholar
  56. 56.
    Tenforde, T. S. (1985) Mechanisms for the biological effects of magnetic fields. In Biological Effects and Dosimetry of Static Magnetic Fields and ELF Electromagnetic Fields. (Grandolfo, M., Michaelson, S. M., and Rindi, A. V., eds.). Plenum Press, New York pp. 71–92.Google Scholar
  57. 57.
    De Certaines, J. D. (1992) Molecular and cellular responses to orientation effects in static and homogeneous ultra high magnetic fields. Ann. NY Acad. Sci. 649, 35–43.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  1. 1.Department of Biological SciencesPurdue UniversityWest Lafayette

Personalised recommendations