Cell Biochemistry and Biophysics

, Volume 39, Issue 2, pp 133–144 | Cite as

Antifreeze glycoproteins

Structure, conformation, and biological applications
Review Article

Abstract

Antifreeze glycoproteins (AFGPs) are a novel class of biologically significant compounds that possess the ability to inhibit the growth of ice both in vitro and in vivo. Any organic compound that possesses the ability to inhibit the growth of ice has many potential medical, industrial, and commercial applications. In an effort to elucidate the molecular mechanism of action, various spectroscopic and physical techniques have been used to investigate the solution conformations of these glycoproteins. This review examines the characterization of AFGPs and potential biological applications relating to stabilization of lipid membranes and vitrification adjuvants.

Index Entries

Antifreeze glycoproteins thermal hysteresis membrane stabilization vitrification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sun, X., Griffith, M., Pasternak, J. J., and Glick, B. R. (1995) Low temperature growth, freezing survival and production of antifreeze protein by the plant growth promoting Rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 41, 776–784.PubMedCrossRefGoogle Scholar
  2. 2.
    Yeh, Y. and Feeney, R. E. (1996) Antifreeze proteins: structures and mechanisms of action. Chem. Rev. 96, 601–617.PubMedCrossRefGoogle Scholar
  3. 3.
    Davies, P. L. and Sykes, B. D. (1997) Antifreeze proteins. Curr. Opin. Struc. Biol. 7, 828–834.CrossRefGoogle Scholar
  4. 4.
    Feeney, R. E. and Yeh, Y. (1993) Antifreeze proteins: properties, mechanism of action and possible applications. Food Technol. 47, 82–88.Google Scholar
  5. 5.
    Cheng, C. C. and DeVries, A. L. (1991) The role of antifreeze glycopeptides and peptides in the freezing avoidance of cold water fish in freezing avoidance of cold water fish. In Life Under Extreme Conditions (di Prisco, G., ed.), Springer-Verlag, Berlin, pp. 1–14.Google Scholar
  6. 6.
    Fletcher, G. L., Hew, C. L., and Davies, P. L. (2001) Antifreeze proteins of teleost fishes. Annu. Rev. Physiol. 63, 359–390.PubMedCrossRefGoogle Scholar
  7. 7.
    Morris, H. R., Thompson, M. R., Osuga, D. T., Ahmed, A. I., Chan, S. M., Vandenheede, J. R., and Feeney, R. E. (1978) Antifreeze glycoproteins from the blood of an Antarctic fish-the structure of the proline-containing glycopeptides. J. Biol. Chem. 253, 5155–5162.PubMedGoogle Scholar
  8. 8.
    Brown, R. A. and Feeney, R. E. (1985) Direct evidence for antifreeze glycoprotein adsorption onto an ice surface. Biopolymers 24, 1265–1270.PubMedCrossRefGoogle Scholar
  9. 9.
    Ananthanaryanan, V. S. (1989) Antifreeze proteins: structural diversity and mechanism of action. Life Chem. Rep. 7, 1–32.Google Scholar
  10. 10.
    Wilson, P. (1993) Explaining thermal hysteresis by the Kelvin effect. Cryo-Letters 14, 31–36.Google Scholar
  11. 11.
    Knight, C. A., Cheng, C. C., and Devries, A. L. (1991) Adsorption of alpha helical antifreeze peptides on specific ice crystal surface planes. Biophys. J. 59, 409–408.PubMedGoogle Scholar
  12. 12.
    Wilson, P. W., Beaglehole, D., and DeVries, A. L. (1993) Antifreeze glycopeptide adsorption on single crystal ice surfaces using ellipsometry. Biophys. J. 64, 1878.PubMedGoogle Scholar
  13. 13.
    Hall, D. G. and Lips, A. (1999) Phenomenology and mechanism of antifreeze peptide activity. Langmuir 15, 1905–1912.CrossRefGoogle Scholar
  14. 14.
    Knight, C. A., Driggers, E., and Devries, A. L., (1993) Adsorption to ice of fish antifreeze glycopeptide-7 and glycopeptide-8. Biophys. J. 64, 252–259.PubMedGoogle Scholar
  15. 15.
    Wierzbicki, A., Taylor, M. S., Knight, C. A., Madura, J. D., Harrington, J. P., and Sikes, C. S. (1996) Analysis of shorthorn sculpin antifreeze protein stereospecific binding to (2–10) faces of ice. Biophys. J. 71, 8–18.PubMedGoogle Scholar
  16. 16.
    Chao, H. M., Houston, M. E. Jr., Hodges, R. S., Kay, C. M., Sykes, B. D., Loewen, M. C., et al. (1997) A diminished role for hydrogen bonds in antifreeze protein binding to ice. Biochemistry 36, 14652–14660.PubMedCrossRefGoogle Scholar
  17. 17.
    DeLuca, C. I., Comley, R., and Davies, P. L. (1998) Antifreeze proteins bind independently to ice. Biophys. J. 74, 1502–1508.PubMedGoogle Scholar
  18. 18.
    Gronwald, W., Chao, H., Reddy, D. V., Davies, P. L., Sykes, B. D., and Sonnichsen, F. D. (1996) NMR characterization of side-chain flexibility and backbone structure in the type I antifreeze protein near freezing temperatures. Biochemistry 35, 16698–16704.PubMedCrossRefGoogle Scholar
  19. 19.
    Karim, O. A. and Haymet, A. D. J. (1988) The ice-water interface: a molecular dynamics simulation study. J. Chem. Phys. 89, 6889–6896.CrossRefGoogle Scholar
  20. 20.
    Martin, Y. C. (1978) Quantitative Drug Design: A Critical Introduction, Marcel Decker, New York.Google Scholar
  21. 21.
    Franks, F. and Morris, E. R. (1978) Blood glyco-protein from Antarctic fish. Possible conformational origins of antifreeze activity. Biochem. Biophys. Acta. 540, 346–356.PubMedGoogle Scholar
  22. 22.
    Bush, C. A., Feeney, R. E., Osuga, D. S. T., Talapati, S., and Yeh, Y. (1981) Antifreeze glycoprotein conformation model based upon vacuum ultraviolet circular dichroism data. J. Peptide Protein Res. 17, 125–129.CrossRefGoogle Scholar
  23. 23.
    Bush, C. A. and Feeney, R. E. (1986) Conformation of the glycotropeptide repeating unit of antifreeze glycoprotein of polar fish as determined from the fully assigned NMR spectrum. Int. J. Peptide Protein Res. 28, 386–397.CrossRefGoogle Scholar
  24. 24.
    Rao, B. N. and Bush, C. A. (1987) Comparison by proton NMR spectroscopy of the conformation of the 2600 dalton antifreeze glycopeptide of polar cod with that of the high molecular weight antifreeze glycoprotein. Biopolymers 26, 1227–1244.PubMedCrossRefGoogle Scholar
  25. 25.
    Lane, A. N., Hays, L. M., Feeney, R. E., Crowe, L. M., and Crowe, J. H. (1998) Conformational and dynamic properties of a 14 residue antifreeze glycopeptide from Antarctic cod. Protein Sci. 7, 1555–1563.PubMedGoogle Scholar
  26. 26.
    Tsvetkova, N. M., Phillips, B. L., Krishnan, V. V., Feeney, R. E., Fink, W. H., Crowe, J. H., Risbud, S. H., Talbin, F., and Yeh, Y. (2002) Dynamics of antifreeze glycoproteins in the presence of ice. Biophys. J. 82, 464–473.PubMedGoogle Scholar
  27. 27.
    Lavalle, P., DeVries, A. L., Cheng, C. C. C., Scheuring, S., and Ramsden, J. J. (2000) Direct observation of postadsorption aggregation of antifreeze glycoproteins on silicates. Langmuir 16, 5785–5789.CrossRefGoogle Scholar
  28. 28.
    Hansen, T. N., Devries, A. L., and Baust, J. G. (1991) Calorimetric analysis of antifreeze glycoproteins of the polar fish, Dissostichus-Mawsoni. Biochim. et Biophys. Acta 1079, 169–173.Google Scholar
  29. 29.
    Block, W. (1994) Differencial scanning calorimetry in ecophysiological research. Acta Ecol. 15, 13–22.Google Scholar
  30. 30.
    Baust, J. M. (2002) Molecular mechanisms of cellular demise associated with cryopreservation failure. Cell Preservation Technol. 1, 17–31.CrossRefGoogle Scholar
  31. 31.
    Glander, A. J. and Schaller J. (1999) Binding of annexin V to plasma membranes of human spermatozoa: A rapid assay for detection of membrane changes after cryostorage. Mol. Hum. Reprod. 5, 109–115.PubMedCrossRefGoogle Scholar
  32. 32.
    Baust, J. M., Van Buskirk, R. G., and Baust, J. G. (2000) Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell. Dev. Biol. Animal 36, 262–270.CrossRefGoogle Scholar
  33. 33.
    Fowke, K. R., Behnke, J., Hanson, C., Shea, K., and Cosentino, M. (2000) Apoptosis: A method for evaluating the cryopreservation of whole blood mononuclear cells. J. Immunol. Mech. 244, 139–144.CrossRefGoogle Scholar
  34. 34.
    Hilbert, S. L., Luna, R. E., Zhang, J., Wang, Y., Hopkins, R. A., Yu, Z. X., and Ferran, V. T. (1999) Allograft heart valves: the role of apoptosis-mediated cell loss. J. Thorac. Cardiovasc. Surg. 117, 454–462.PubMedCrossRefGoogle Scholar
  35. 35.
    Villalba, R., Pena, J., Luque, E., and Gomez-Villagran, J. L. (2001) Characterization of ultrastructural damage of valves cryopreserved under standard conditions. Crybiology 43, 81–84.CrossRefGoogle Scholar
  36. 36.
    Mazur, P. (1963) Kinetic of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J. Gen. Physiol. 47, 347–369.PubMedCrossRefGoogle Scholar
  37. 37.
    Rubinsky, B., Arav, A., and Devries, A. L. (1992) The cryoprotective effect of antifreeze glycopeptides from Antarctic fishes. Cryobiology 29, 69–79.PubMedCrossRefGoogle Scholar
  38. 38.
    Storey, K. B., Bischof, J., and Rubinsky, B. (1992) Cryomicroscopic analysis of freezing in liver of the freeze tolerant wood frog. Am. J. Physiol. 263, R185-R194.PubMedGoogle Scholar
  39. 39.
    Hincha, D. K., Devries, A. L., and Schmitt, J. M. (1993) Cryotoxicity of antifreeze proteins and glycoproteins to spinach thylakoid membranes —comparison with cryotoxic sugar acids. Biochim. Biophys. Acta 1146, 258–264.PubMedCrossRefGoogle Scholar
  40. 40.
    Cheng, C. and Devries, A. L. (1992) Do antifreeze proteins have a role in maintenance of ion gradients across cell membranes in polar fishes and invertebrates? Cryobiology 29, 783.Google Scholar
  41. 41.
    Payne, S. R., Oliver, J. E., and Upreti, G. C. (1994) Effect of antifreeze proteins on the motility of ram spermatozoa. Cryobiology 31, 180–184.PubMedCrossRefGoogle Scholar
  42. 42.
    Hays, L., Feeney, R. E., Crowe, L. M., Crowe, J. H., and Oliver, A. E. (1996) Antifreeze glycoproteins inhibit leakage from liposomes during thermotropic phase transitions. Proc. Natl. Acad. Sci. USA 93, 6835–6840.PubMedCrossRefGoogle Scholar
  43. 43.
    Quinn, P. J. (1995) A liquid-phase separation model of low temperature damage to biological membranes. Crybiology 22, 128–146.CrossRefGoogle Scholar
  44. 44.
    Clerc, S. G. and Thompson, T. G. (1995) Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer-membranes with coexisting gel and liquid-crystalline phases. Biophys. J. 68, 2333–2341.PubMedCrossRefGoogle Scholar
  45. 45.
    Wu, Y. and Fletcher, G. L. (2000) Efficacy of antifreeze protein types in protecting liposome membrane integrity depends on phospholipid class. Biochim. Biophys. Acta 1524, 11–16.Google Scholar
  46. 46.
    Arav, A., Yavin, S., Zeron, Y., Natan, D., Dekel, I., and Gacitua, H. (2002) New trends in gamete's cryopreservation. Mol. Cell. Endocrinol. 187, 77–81.PubMedCrossRefGoogle Scholar
  47. 47.
    Marsland, T. P., Evans, S., and Pegg, D. E. (1981) Dielectric measurements for design of an electromagnetic rewarming system. Cryobiology 24, 311–323.CrossRefGoogle Scholar
  48. 48.
    Robinson, M. P. and Pegg, D. E. (1999) Rapid electromagnetic warming of cells and tissues. IEEE Trans. Biomed. Eng. 46, 1413–1425.PubMedCrossRefGoogle Scholar
  49. 49.
    Pegg, D. E. (2002) The history and principles of cryopreservation. Semin. Reprod. Med. 20, 5–13.PubMedCrossRefGoogle Scholar
  50. 50.
    Rubinsky, B., Arav, A., and Devries, A. L. (1991) Cryopreservation of oocytes using directional cooling and antifreeze glycoproteins. Cryo-Letters 12, 93–106.Google Scholar
  51. 51.
    Eto, T. K. and Rubinsky, B. (1993) Antifreeze glycoproteins increase solution viscosity. Biochem. Biophys. Res. Commun. 197, 927–931.PubMedCrossRefGoogle Scholar
  52. 52.
    Wu, Y., Banoub, J., Goddard, S. V., Kao, M. H., and Fletcher G. L. (2001) Antifreeze glycoproteins: relationship between molecular weight, thermal hysteresis and the inhibition of leakage from liposomes during thermotropic phase transition. Comp. Biochem. Physiol. Part B 128, 265–273.CrossRefGoogle Scholar
  53. 53.
    Pickering, S. J., Braude, P. R., Johnson, M. H., Can, A., and Currie, J. (1990) Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil. Steril. 54, 102–108.PubMedGoogle Scholar
  54. 54.
    Pickering, S. J. and Johnson, M. H. (1987) The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Hum. Reprod. 2, 207–216.PubMedGoogle Scholar
  55. 55.
    O'Neil, L., Paynter, S. J., Fuller, B. J., Shaw, R. W., and DeVries, A. L. (1998) Vitrification of mature mouse oocytes in a 6M Me2SO solution supplemented with antifreeze glycoproteins: The effect of temperature. Cryobiology 37, 59–66.PubMedCrossRefGoogle Scholar
  56. 56.
    Vincent, C. and Johnson, M. H. (1992) Cooling, cryoprotectants, and the cytoskeleton of the mammalian oocyte. Oxford Rev. Reprod. Biol. 14, 73–100.Google Scholar
  57. 57.
    Filira, F., Biondi, L., Scolaro, B., Foffani, M. T., Mammi, S., Peggion, E., and Rocchi, R. (1990) Solid phase synthesis and conformation of sequential glycosylated polypeptide sequences related to antifreeze glycoproteins. Int. J. Biol. Macromol. 12, 41–49.PubMedCrossRefGoogle Scholar
  58. 58.
    Tsuda, T. and Nishimura, S. I. (1996) Synthesis of an antifreeze glycoprotein analogue: Efficient preparation of sequential glycopolymers. Chem. Commun. 24, 2779–2780.CrossRefGoogle Scholar
  59. 59.
    Meldal, M. and Jensen, K. J. (1990) Pentafluorophenyl esters for the temporary protection of the α-carboxy group in solid phase synthesis. J. Chem. Soc. Chem. Commun. 483–485.Google Scholar
  60. 60.
    Anisuzzaman, A. K. M., Anderson, L., and Navia, J. L. (1988) Synthesis of a close analogue of the repeating unit of the antifreeze glycoproteins of polar fish. Carbohydr. Res. 174, 265–278.PubMedCrossRefGoogle Scholar
  61. 61.
    Tseng, P. H., Jiiang, W. T., Chang, M. Y., and Chen, S. T. (2001) Facile solid phase synthesis of an antifreeze glycoprotein. Chem. Eur. J. 7, 585–590.CrossRefGoogle Scholar
  62. 62.
    Enaide, A. and Ben, R. N., (2001) Fully convergent solid phase synthesis of antifreeze glycoprotein analogues. Biomacromolecules 2, 557–561.CrossRefGoogle Scholar
  63. 63.
    Ben, R. N., Enaide, A., and Hauer, L. (1999) Synthesis of a C-linked antifreeze glycoprotein (AFGP) mimic: Probes for investigating the mechanism of action. Org. Lett. 1, 1759–1762.CrossRefGoogle Scholar
  64. 64.
    Eniade, A., Murphy, A. V., Landreau, G., and Ben, R. N. (2001) A general synthesis of structurally diverse building blocks for preparing analogues of C-linked antifreeze glycoproteins. Bioconjugate Chem. 12, 817–823.CrossRefGoogle Scholar
  65. 65.
    Arnott, J. On the Treatment of Cancer by Regulated Application of an Anesthetic Temperature, Churchill, London, 1851.Google Scholar
  66. 66.
    Koushafar, H. and Rubinsky, B. (1997) Effect of antifreeze proteins on frozen primary prostatic adenocarcinoma cells. Urology 49, 421–425.PubMedCrossRefGoogle Scholar
  67. 67.
    Pham, L., Dahiya, R., and Rubinsky, B. (1999) An in vivo study of antifreeze protein adjuvant cryosurgery. Cryosurgery 38, 169–175.Google Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of OttawaOntarioCanada

Personalised recommendations