Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles

Review Article


The introduction of electrostatic layer-by-layer (LbL) self-assembly has shown broad biomedical applications in thin film coating, micropatterning, nanobioreactors, artificial cells, and drug delivery systems. Multiple assembly polyelectrolytes and proteins are based on electrostatic interaction between oppositely charged layers. The film architecture is precisely designed and can be controlled to 1-nm precision with a range from 5 to 1000 nm. Thin films can be deposited on any surface including many widely used biomaterials. Microencapsulation of micro/nanotemplates with multilayers enabled cell surface modification, controlled drug release, hollow shell formation, and nanobioreactors. Both in vitro and in vivo studies indicate potential applications in biology, pharmaceutics, medicine, and other biomedical areas.

Index Entries

Layer-by-layer self-assembly silicone rubber thin films shell micropatterning microencapsulation 


  1. 1.
    Decher, G. (1997) Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 227, 1232–1237.CrossRefGoogle Scholar
  2. 2.
    Bertrand, P., Jonas, A., Laschevsky, A., and Legras, R. (2000) Ultrathin polymer coating by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol. Rapid Commun. 21, 319–348.CrossRefGoogle Scholar
  3. 3.
    Lvov, Y. Electrostatic layer-by-layer assembly of proteins and polyions. In Protein Architecture: Interfacial Molecular Assembly and Immobilization Biotechnology (Lvov, Y., and Möhwald, H. M., eds.). Dekker, New York, 2000, pp. 125–167.Google Scholar
  4. 4.
    Lvov, Y., Decher, G., and Möhwald, H. (1993) Assembly, structural characterization and thermal behavior of layer-by-layer deposited ultrathin films of polyvinylsulfate and polyallylamine. Langmuir 9, 481–486.CrossRefGoogle Scholar
  5. 5.
    Decher, G., Essler, F., Hong, J. D. Lowack, K., Schmitt, J., and Lvov, L. (1993) Layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Polymer Preprints 34, 745–746.Google Scholar
  6. 6.
    Mendelsohn, J. D., Yang, S., Hiller, J., Hochbaum, A. I., and Rubner, M. F. (2003) Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films. Biomacromolecules 4, 96–106.PubMedCrossRefGoogle Scholar
  7. 7.
    Elbert, D., Herbert, C., and Hubbell, J. (1999) Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces. Langmuir 15, 5355–5362.CrossRefGoogle Scholar
  8. 8.
    Schlenoff, J. Dubas, S., and Farhat, T. (2000) Sprayed polyelectrolyte multilayers. Langmuir 16, 9968–9969.CrossRefGoogle Scholar
  9. 9.
    Hua, F., Cui, T., and Lvov, Y. (2002) Lithographic approach to pattern self-assembled nanoparticle multilayers. Langmuir 18, 67123-#6715.CrossRefGoogle Scholar
  10. 10.
    Zheng, H., Lee, I., Rubner, M., and Hammond, P. Two component particle arrays on patterned polyelectrolyte multilayer templates. Adv. Mat. 14, 681.Google Scholar
  11. 11.
    Ai, H., Lvov, Y. M., Mills, D. K., Alexander, J. S., and Jones, S. A. (2003) Coating and selective deposition of nanofilm on silicone rubber for endothelial cell adhesion and growth. Cell. Biochem. Biophys., 38, 103–114.PubMedCrossRefGoogle Scholar
  12. 12.
    Lvov, Y. and Caruso, F. (2001) Biocolloids with ordered urease multilayer shells as enzymatic reactors. Anal. Chem. 73(17), 4212–4217.PubMedCrossRefGoogle Scholar
  13. 13.
    Fang, M., Grant, P. S., McShane, M., Sukhorukov, G., Golub, V., and Lvov, Y. (2002) Magnetic bio/nanoreactor with multilayer shells of glucose oxidase and inorganic nanoparticles. Langmuir 18, 6338–6344.CrossRefGoogle Scholar
  14. 14.
    Ai, H., Fang, M., Jones, S. A., and Lvov, Y. (2002) electrostatic layer-by-layer nanoassembly on biological microtemplates. Platelets Biomacromolecules 3, 560–564.CrossRefGoogle Scholar
  15. 15.
    Qiu, X., Leporatti, S., Donath, E., and Möhwald, H. (2001) Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir 17, 5375–5380.CrossRefGoogle Scholar
  16. 16.
    Ai, H., Jones, S. A., de Villiers, M. M., and Lvov, Y. (2003) Nano-encapsulation of furosemide microcrystals for controlled drug release. J. Control. Release 89, 59–68.CrossRefGoogle Scholar
  17. 17.
    Ho, P., Kim, J., Burroughes, J. H., et al. (2000) Molecular-scale interface engineering for polymer light-emitting diodes. Nature 404, 481–484.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee, J-K., Mattoussi, H., Yoo, D., Wu, A., and Rubner, M. (1997) Thin film light emitting heterostructures: from conjugated polymers to ruthenium complexes to inorganic nanocrystallites. Polymer Prep. 38, 351–352.Google Scholar
  19. 19.
    Gao, M., Richter, B., and Kirstein, S. (1997) White-light electroluminescent from self-assembled Q-CdS/PPV multilayer structures. Adv. Mater. 9, 802–805.CrossRefGoogle Scholar
  20. 20.
    Lvov, Y., Antipov, A. A., Mamedov, A., Möhwald, H., and Sukhorukov G. B. (2001) Urease encapsulation in nanoorganized microshells. Nano. Lett. 1, 125–128.CrossRefGoogle Scholar
  21. 21.
    Mao, G., Tsao, Y., Tirrell, M., Davis, H. T., Hessel, V., and Ringsdorf, H. (1995) Interaction, structure, and stability of photoreactive bolaform amphiphile multilayers. Langmuir 11, 942–952.CrossRefGoogle Scholar
  22. 22.
    Cheung, J., Fou, A., and Rubner, M. (1994) Molecular self-assembly of conducting polymers. Thin Solid Films 244, 985–989.CrossRefGoogle Scholar
  23. 23.
    Kleinfeld, E., and Ferguson, G. (1994) Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science 265, 370–373.PubMedCrossRefGoogle Scholar
  24. 24.
    He, J-A., Samuelson, L., Li, L., Kumar, J., and Tripathy, S. (1998) Oriented bacteriorhodopsin/polycation multilayers by electrostatic layer-by-layer assembly. Langmuir 14, 1674–1679.CrossRefGoogle Scholar
  25. 25.
    Ulman, A. An Introduction to Ultrathin Films, from Langmuir-Blodgett to Self-Assembly. Academic Press, Boston, 1991, pp. 1–440.Google Scholar
  26. 26.
    Sano, M. Lvov, Y. and Kunitake, T. (1996) Formation of ultrathin polymer layers on solid substrates by means of polymerization-induced epitaxy and alternate adsorption. Annu. Rev. Mater. Sci. 26, 153–187.CrossRefGoogle Scholar
  27. 27.
    Lvov, Y., Ariga, K., Ichinose, I., and Kunitake, K. (1995) Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J. Am. Chem. Soc. 117, 6117–6123.CrossRefGoogle Scholar
  28. 28.
    Decher, G., Lvov, Y. and Schmitt, J. (1994) Proof of multilayer structural organization of polycation/polyanion self-assembled films. Thin Solid Films 244, 772–777.CrossRefGoogle Scholar
  29. 29.
    Yoo, D., Shiratori, S., and Rubner, M. (1998) Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules 31, 4309–4318.CrossRefGoogle Scholar
  30. 30.
    Ratner, B. D. (1995) Surface modification of polymers: chemical, biological and surface analytical challenges. Biosens. Bioelectron 10(9–10), 797–804.PubMedCrossRefGoogle Scholar
  31. 31.
    Ratner, B. D. (1993) New ideas in biomaterials science—a path to engineered biomaterials. J. Biomed. Mater. Res. 27, 837–850.PubMedCrossRefGoogle Scholar
  32. 32.
    Lvov. Y. and Decher. G. (1994) Assembly of multilayer ordered films by alternating adsorption of oppositely charged macromolecules. Crystallog. Rep. 39, 628–647.Google Scholar
  33. 33.
    Schmitt, J., Grünewald, T., Krajer, K., Pershan, P., Decher, G., and Löshe, M. (1993) The internal structure of layer-by-layer adsorbed polyelectrolyte films: a neutron and X-ray reflectivity study. Macromolecules 26, 7058–7063.CrossRefGoogle Scholar
  34. 34.
    Cima, L. G. (1994) Polymer substrates for controlled biological interactions. J. Cell. Biochem. 56, 155–161.PubMedCrossRefGoogle Scholar
  35. 35.
    Osterberg, E., Bergström, K., Holmberg, K., et al. (1995) Protein-rejecting ability of surface-bound dextran in end-on and side-on configurations: comparison to PEG. J. Biomed. Mater. Res. 29, 741–747.PubMedCrossRefGoogle Scholar
  36. 36.
    Lvov, Y. Onda, M. Ariga, K., and Kunitake, T. (1998) Ultrathin films of charged polysaccharides assembled alternately with linear polyions. J. Biomater. Sci. Polym. Ed. 9, 345–355.PubMedGoogle Scholar
  37. 37.
    Serizawa, T., Yamaguchi, M., and Akashi, M. (2002) Alternating bioactivity of polymeric layer-by-layer assemblies: anticoagulation vs procoagulation of human blood. Biomacromolecules 3, 724–731.PubMedCrossRefGoogle Scholar
  38. 38.
    Hogt, A. H., Dankert, J., de Vries, J. A., and Feijen, J. (1983) Adhesion devices of coagulase-negative staphylococci to biomaterials. J. Gen. Microbiol. 129, 1959–1968.Google Scholar
  39. 39.
    An, Y. H., and Friedman, R. J. (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 43, 338–348.PubMedCrossRefGoogle Scholar
  40. 40.
    An, Y. H., Bradley, J., Powers, D. L., and Friedman, R. J. (1997) In vivo study of preventing prosthetic infection using cross-linked albumin coating. J. Bone. Joint. Surg. 79, 816–819.CrossRefGoogle Scholar
  41. 41.
    Brynda, E. and Houska, M. Ordered multilayer assemblies: albumin/heparin for biocompatible coating and monoclonal antibodies for optical immunosensors. In Protein Architecture: Interfacial Molecular Assembly and Immobilization Biotechnology (Lvov, Y. and Möhwald, H., eds.). Dekker, New York, 2000, pp. 251–286.Google Scholar
  42. 42.
    Willoughby, D. A. ed. First International Workshop on Hyaluronan in Drug Delivery. Windsor, UK, Royal Society of Medicine Press, 1994.Google Scholar
  43. 43.
    Ai, H., Lvov, Y., Mills, D. K., et al. Coating bionanofilm on PDMS through layer-by-layer self-assembly. Proceedings of the Second Joint EMBS/BMES Conference, Houston, TX, 2002, pp. 608–609.Google Scholar
  44. 44.
    Verheye, S., Markou, C. P., Salame, M. Y., et al. (2000) Reduced thrombus formation by hyaluronic acid coating of endovascular devices. Arterioscler. Thromb. Vasc. Biol. 20, 1168–1172.PubMedGoogle Scholar
  45. 45.
    Bickel, C., Rupprecht, H. J., Darius, H., et al. (2001) Substantial reduction of platelet adhesion by heparin-coated stents. J. Intervent. Cardiol. 14, 407–413.PubMedCrossRefGoogle Scholar
  46. 46.
    Maalej, N., Albrecht, R., Loscalzo, J., and Folts, J. D. (1999) The potent platelet inhibitory effects of S-nitrosated albumin coating of artificial surfaces. J. Am. Coll. Cardiol. 33, 1408–1414.PubMedCrossRefGoogle Scholar
  47. 47.
    Carrozza, J. P. and Baim, D. S. (1995) Thrombotic and hemorrhagic complications of stenting coronary arteries: incidence, management, and prevention. J. Thromb. Thrombolysis 1, 289–297.PubMedCrossRefGoogle Scholar
  48. 48.
    Galeska, I., Hickey, T., Moussy, F., Kreutzer, D., and Papadimitrakopoulos, F. Characterization and biocompatibility studies of novel humic acids based films as membrane material for an implantable glucose sensor. Biomacromolecules 2, 1249–1255.Google Scholar
  49. 49.
    Bontempo, A. R. and Rapp, J. (1997) Proteinlipid interaction on the surface of a hydrophilic contact lens in vitro. Curr. Eye. Res. 16, 776–781.PubMedCrossRefGoogle Scholar
  50. 50.
    Maissa, C., Franklin, V., Guillon, M., and Tighe, B. (1998) Influence of contact lens material surface characteristics and replacement frequency on protein and lipid deposition. Optometry Vision. Sci. 75, 697–705.CrossRefGoogle Scholar
  51. 51.
    Acton, C., Hoffman, G., McKenna, H., and Moloney, F. (1989) Silicone-induced foreign-body reaction after temporomandibular joint arthroplasty. Case report. Aust. Dent. J. 34, 228–232.PubMedGoogle Scholar
  52. 52.
    Adams, W. P. J., Robinson, J. B. J., and Rohrich, R. J. (1998) Lipid infiltration as a possible biologic cause of silicone gel breast implant aging. Plast. Reconstr. Surg. 101, 64–68.PubMedCrossRefGoogle Scholar
  53. 53.
    Carmen, R. and Mutha, S. C. (1972) Lipid absorption by silicone rubber heart valve poppets—in-vivo and in-vitro results. J. Biomed. Mater. Res. 6, 327–346.PubMedCrossRefGoogle Scholar
  54. 54.
    Klemic, K., Klemic, J., Reed, M., and Sigworth, F. (2002) Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells. Biosens. Bioelectron 17, 597–604.PubMedCrossRefGoogle Scholar
  55. 55.
    Ai, H., Fang, M., Lvov, Y., Mills, D., Alexander, J., and Jones, S. (2002) Coating poly-d-lysine nano-film on PDMS for endothelial cell adhesion and growth. FASEB J. 16(4), A36.Google Scholar
  56. 56.
    Chen, W. and McCarthy, T. J. (1997) Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules 30, 78–86.CrossRefGoogle Scholar
  57. 57.
    Levasalmi, J. and McCarthy, T. J. (1997) Poly(4-methyl-1-pentene)-supported polyelectrolyte multilayer films: preparation and gas permeability. Macromolecules 30, 1752–1757.CrossRefGoogle Scholar
  58. 58.
    Deutsch, J., Motlagh, D., Russell, B., and Desai, T. A. (2000) Fabrication of microtextured membranes for cardiac myocyte attachment and orientation. J. Biomed. Mater. Res. 53, 267–275.PubMedCrossRefGoogle Scholar
  59. 59.
    Mata, A., Boehm, C., Fleischman, A. J., Muschler, G., and Roy, S. (2002) Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces. J. Biomed. Mater. Res. 62, 499–506.PubMedCrossRefGoogle Scholar
  60. 60.
    Lvov, Y., Decher, G., and Sukhorukov, G. (1993) Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine). Macromolecules 26, 5396–5399.CrossRefGoogle Scholar
  61. 61.
    Decher, G., Lehr, B., Lowack, K., Lvov, Y., and Schmitt, J. New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens. Bioelectron 9, 677–684.Google Scholar
  62. 62.
    Sukhorukov, G., Möhwald, H., Decher, G., and Lvov, Y. (1996) Layer-by-layer assembly of DNA and polynucleotides films by means of alternate adsorption with polycations. Thin Solid Films 284, 220–223.CrossRefGoogle Scholar
  63. 63.
    Kayushina, R., Lvov, Y., Stepina, N., and Khurgin, Y. (1996) Construction and X-ray reflectivity study of self-assembled lysozyme/polyions multilayers. Thin Solid Films 284, 246–248.CrossRefGoogle Scholar
  64. 64.
    Onda, M., Lvov, Y., Ariga, K., and Kunitake, T. (1996) Sequential reactions by glucose oxidase/peroxidase molecular films assembled by layer-by-layer alternate adsorption. Biotechnol. Bioeng. 51, 163–166.CrossRefPubMedGoogle Scholar
  65. 65.
    Onda, M., Lvov, Y., Ariga, K., and Kunitake, T. Sequential reaction and product separation on molecular films of glucoamylase and glucose oxidase assembled on an ultrafilter. J. Ferment. Bioengin. 82, 502–506.Google Scholar
  66. 66.
    Lvov, Y. and Sukhorukov, G. B. (1997) Protein architecture: assembly of ordered films by means of alternated adsorption of oppositely charged macromolecules. Membr. Cell. Biol. 11, 277–303.PubMedGoogle Scholar
  67. 67.
    Kong, W., Wang, L., Gao, M., Zhou, H., Zhang, X., Li, W., and Shen, J. (1994) Immobilized bilayer glucose isomerase in porous trimethylamine polystyrene based on molecular deposition. J. Chem. Soc. Chem. Comm. 11, 1297–1298.CrossRefGoogle Scholar
  68. 68.
    Lvov, Y., Ariga, K., and Kunitake, T. (1994) Layer-by-layer assembly of alternate protein/polyion ultrathin films. Chem. Lett. 2323–2326.Google Scholar
  69. 69.
    Kong, J., Lu, Z., Lvov, Y., Desamero, R., Frank, H., and Rusling, J. (1998) Direct electrochemistry of cofactor redox sites in bacterial photosynthetic reaction center protein. J. Am. Chem. Soc. 120, 7371–7372.CrossRefGoogle Scholar
  70. 70.
    Kong, J., Sun, W., Wu, X., Deng, J., Lvov, Y., Desamero, R., Frank, H., and Rusling, J. (1999) Fast reversible electron transfer from photosynthetic reaction center from wild type Rhodobacter spheroids reconstituted in polycation sandwiched monolayer film. Bioelectrochem. Bioeng. 48, 101–107.CrossRefGoogle Scholar
  71. 71.
    Caruso, F., Niikura, K., Furlong, N., and Okahata, Y. (1997) Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing. Langmuir 13, 3427–3433.CrossRefGoogle Scholar
  72. 72.
    Onda, M., Ariga, K., and Kunitake, T. (1999) Activity and stability of glucose oxidase in molecular films assembled alternately with polyions. J. Biosci. Bioeng. 87, 69–75.PubMedCrossRefGoogle Scholar
  73. 73.
    Singhvi, R., Kumar, A., Lopez, G. P., et al. (1994) Engineering cell shape and function. Science 264, 696–698.PubMedCrossRefGoogle Scholar
  74. 74.
    Biebuyck, H. A., and Whitesides, G. M. (1994) Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold. Langmuir 10, 2790–2793.CrossRefGoogle Scholar
  75. 75.
    Chen, K., Jiang, X., Kimerling, L., and Hammond, P. (2000) selective self-organization of coll oids on patterned polyelectrolyte templates. Langmuir 16, 7825–7834.CrossRefGoogle Scholar
  76. 76.
    Inerowicz, H. D., Howell, S., Regnier, F. E., and Reifenberger, R. (2002) Multiprotein immunoassay arrays fabricated by microcontact printing. Langmuir 18, 5263–5268.CrossRefGoogle Scholar
  77. 77.
    Langer, R. (1998) Drug delivery and targeting. Nature 392, 5–10.PubMedGoogle Scholar
  78. 78.
    Jalil, R., and Nixon, J. R. (1990) Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules — problems associated with preparative techniques and release properties. J. Microencapsul. 7(3), 297–325.PubMedCrossRefGoogle Scholar
  79. 79.
    Wu, X. S. Preparation, characterization, and drug delivery applications of microspheres based on biodegradable lactic/glycolic acid polymers. In Encyclopedic Handbook of Biomaterials and Bioengineering (Wise, et al., eds.). New York: Marcel Dekker, 1995, pp. 1151–1200.Google Scholar
  80. 80.
    Arshady, R. (1991) Preparation of biodegradable microspheres and microcapsules: 2. Polylactides and related polyesters. J. Control. Rel. 17, 1–22.CrossRefGoogle Scholar
  81. 81.
    Park, J. W., Hong, K., Kirpotin, D., Papahajopoulos, D., and Benz, C. C. (1997) Immunoliposomes for cancer treatment. Adv. Pharmacol. 40, 399–435.PubMedCrossRefGoogle Scholar
  82. 82.
    Moya, S., Donath, E., Sukhorukov, G. B., et al. (2000) Lipid coating on polyelectrolyte surface modified colloidal particles and polyelectrolyte capsules. Macromolecules 33, 4538–4544.CrossRefGoogle Scholar
  83. 83.
    LaVan, D. A., Lynn, D. M., and Langer, R. (2002) Moving smaller in drug discovery and delivery. Nat. Rev. Drug. Disc. 1, 77–84.CrossRefGoogle Scholar
  84. 84.
    Antipov, A., Sukhorukov, G., Donath, E., and Möhwald, H. (2001) Sustained release properties of polyelectrolyte multilayer capsules. J. Phys. Chem. Biol. B. 105(12), 2281–2284.CrossRefGoogle Scholar
  85. 85.
    Junyaprasert, V., Mitrevej, A., Sinchaipanid, N., Boonme, P., and Wurster, D. (2001) Effect of process variables on the microencapsulation of vitamin A palmitate by gelatin-acacia coacervation. Drug. Dev. Ind. Pharmacol. 27(6), 561–566.CrossRefGoogle Scholar
  86. 86.
    Dubin, P., Block, J., Davies, R., Schulz, D., Thies, C., eds. (1995) Macromolecular Complexes in Chemistry and Biology. Springler-Verlag, Berlin, pp. 285–324.Google Scholar
  87. 87.
    Balabushevitch, N. G., Sukhorukov, G. B., Moroz, N. A., et al. (2001) Encapsulation of proteins by layer-by-layer adsorption of poly-electrolytes onto protein aggregates: factors regulating the protein release. Biotechnol. Bioeng. 76(3), 207–213.PubMedCrossRefGoogle Scholar
  88. 88.
    Donath, E., Sukhorukov, G. B., Caruso, F., Davis, S. A., and Möhwald, H. (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed. 37(16), 2201–2205.CrossRefGoogle Scholar
  89. 89.
    Caruso, F., Caruso, R. A., and Möhwald, H. (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111–1114.PubMedCrossRefGoogle Scholar
  90. 90.
    Discher, B. M., Won, Y., Ege, D. S., Lee, J., Bates, F. S., Discher, D. E., and Hammer, D. A. (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284, 1143–1146.PubMedCrossRefGoogle Scholar
  91. 91.
    Dinsmore, A., Hsu, M., Nikolaides, M., Marquez, M., Bausch, A., and Weitz, D. (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298, 1006–1009.PubMedCrossRefGoogle Scholar
  92. 92.
    Klitzing, R. V. and Möhwald, H. (1996) A realistic diffusion model for ultrathin polyelectrolyte films. Macromolecules 29, 6901–6906.CrossRefGoogle Scholar
  93. 93.
    Ibarz, G., Dahne, L., Donath, E., and Möhwald, H. (2002) Controlled permeability of polyelectrolyte capsules via defined annealing. Chem. Mater. 14, 4059–4062.CrossRefGoogle Scholar
  94. 94.
    Sukhorukov, G., Brumen, M., Donath, E., and Möhwald, H. (1999) Hollow polyelectrolyte shells: exclusion of polymers and donnan equilibrium. J. Phys. Chem. Biol. 103, 6434–6440.CrossRefGoogle Scholar
  95. 95.
    Sukhorukov, G., Donath, E., Moya, S., Susha, A. S., Voigt, A., Hartmann, J., and Möhwald, H. (2000) Microencapsulation by means of step-wise adsorption of polyelectrolytes. J. Microencapsul. 17, 177.PubMedCrossRefGoogle Scholar
  96. 96.
    Sukhorukov, G. B., Antipov, A. A., Voigt, A., Donath, E., and Möhwald, H. (2001) pH-controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules. Macromol. Rapid Commun. 22, 44–46.CrossRefGoogle Scholar
  97. 97.
    Tiourina, O., Antipov, A., Sukhorukov, G., Larionova, N., Lvov, Y., and Möhwald, H. (2001) Entrapment of α-chymotrypsin into hollow polyelectrolyte microcapsules. Macromol. Biosci. 1, 209–214.CrossRefGoogle Scholar
  98. 98.
    Antipov, A. A., Sukhorukov, G., Leporatti, S., Radtchenko, I., Donath, E., and Möhwald, H. (2002) Polyelectrolyte multilayer capsule permeability control. Colloid Surface A. 198–200, 535–541CrossRefGoogle Scholar
  99. 99.
    Mendelson, J., Barret, C., Chan, V., Pal, A., Mayes, A., and Rubner, M. (2000) Fabrication of microporous thin films from polyelectrolyte multilayers. Langmuir 16, 5017–5023.CrossRefGoogle Scholar
  100. 100.
    Tiourina, O. and Sukhorukov, G. (2002) Multilayer alginate / protamine microsized capsules: encapsulation of α-chymotrypsin and controlled release study. Int. J. Pharmacol. 242, 155–161.CrossRefGoogle Scholar
  101. 101.
    Bruni, S. and Chang, T. (1989) Hepatocytes immobilised by microencapsulation in artificial cells: effects on hyperbilirubinemia in Gunn rats. Biomater. Artif. Cells. Artif. Organs 17, 403–411.PubMedGoogle Scholar
  102. 102.
    Fremond, B., Joly, A., Desille, M., Desjardins, J., Campion, J., and Clement, B. Cell-based therapy of acute liver failure: the extracorporeal bioartificial liver. Cell. Biol. Toxicol. 12, 325–329.Google Scholar
  103. 103.
    Bader, A., Knop, E., Boker, K., et al. (1995) A novel bioreactor design for in vitro reconstruction of in vivo liver characteristics. Artif. Organs 19, 368–374.PubMedCrossRefGoogle Scholar
  104. 104.
    Chia, S., Wan, A., Quek, C., et al. (2002) Multilayered microcapsules for cell encapsulation. Biomaterials 23, 849–856.PubMedCrossRefGoogle Scholar
  105. 105.
    Ai, H., Fang, M., Lvov, Y., Mills, D., and Jones, S. Applications of the electrostatic layer-by-layer self-assembly technique in biomedical engineering. Proceedings of the Second Joint EMBS/BMES Conference, Houston, TX, 2002, pp. 502, 503.Google Scholar
  106. 106.
    Neu B, Voigt A, Mitlohner R, et al. (2001) Biological cells as templates for hollow microcapsules. J. Microencapsul. 18, 385–395.PubMedCrossRefGoogle Scholar
  107. 107.
    Caruso, F. and Schuler, C. (2000) Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activity. Langmuir 16, 9595–9603.CrossRefGoogle Scholar
  108. 108.
    Sukhorukov, G. Designed nano-engineering polymer films on colloidal particles and capsules. In: Novel Methods to Study Interfacial Layers. (Möbius, D., Miller, R., eds.). Elsevier, Amsterdam, 2001, pp. 384–416.Google Scholar
  109. 109.
    Caruso, F., Trau, D., Möhwald, H., and Renneberg, R. (2000) Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir 16, 1485–1488.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  1. 1.Department of Biomedical Engineering and Institute for MicromanufacturingLouisiana Tech UniversityRuston
  2. 2.Department of Biomedical EngineeringCase Western Reserve UniversityCleveland

Personalised recommendations