Advertisement

Cell Biochemistry and Biophysics

, Volume 38, Issue 3, pp 251–270 | Cite as

Sample preparation and imaging of erythrocyte cytoskeleton with the atomic force microscopy

  • Fei Liu
  • Joel Burgess
  • Hiroshi Mizukami
  • Agnes OstafinEmail author
Original Article

Abstract

A novel method for the covalent attachment of erythrocytes to glass microscope coverslips that can be used to image intact cells and the cytoplasmic side of the cell membrane with either solid or liquid mode atomic force microscopy (AFM) is described. The strong binding of cells to the glass surface is achieved by the interaction of cell membrane carbohydrates to lectin, which is bound to N-5-azido-2-nitrobenzoyloxysuccinimide (ANBNOS)-coated coverslips (1). The effectiveness of this method is compared with the other commonly used methods of immobilizing intact erythrocytes on glass coverslips for AFM observations. Experimental conditions of AFM imaging of biologic tissue are discussed, and typical topographies of the extracellular and the cytoplasmic surfaces of the plasma membrane in the dry state and in the liquid state are presented. Comparison of the spectrin network of cell age-separated erythrocytes has demonstrated significant loss in the network order in older erythrocytes. The changes are quantitatively described using the pixel height histogram and window size grain analysis.

Index Entries

Erythrocyte cytoskeleton spectrin atomic force microscopy biological membranes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karrasch, S., Dolder, M., Schabert, F., Ramsden, J., and Engel, A. (1993) Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys. J. 65, 2437–2446.PubMedGoogle Scholar
  2. 2.
    Henderson, E., Haydon, P. G., and Sakaguchi, D. S. (1992) Actin filaments dynamics in living glial cells imaged by atomic force microscopy. Science 257, 1994–1946.CrossRefGoogle Scholar
  3. 3.
    Butt, H.-J. (1992) Measuring local surface charge densities in electrolyte solutions with a scanning force microscope. Biophys. J. 63, 578–582.PubMedGoogle Scholar
  4. 4.
    Hoh, J. H., Sosinsky, G. E., Revel, J.-P., and Hansma, P. K. (1993) Structure of the extracellular surface of the gap junction by atomic force microscopy Biophys. J. 65, 149–163.PubMedGoogle Scholar
  5. 5.
    Schneider, S. W., Sritharan, K. C., Geibel, J. P., and Oberleithner, H. (1997) Surface dynamics in living acinar cells imaged by atomic force microscopy: Identification of plasma membrane structures involved in exocytosis. Proc. Natl. Acad. Sci. USA 94, 316–321.PubMedCrossRefGoogle Scholar
  6. 6.
    Le Grimellec, C., Lesniewska, E., Giocondi, M.-C., Finot, E., Vie, V., and Goudonnet, J.-P. (1998) Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. Biophys. J. 75, 695–703.PubMedGoogle Scholar
  7. 7.
    Grandbois, M., Dettmann, W., Benoit, M., and Gaub, H. E. (2000) Affinity imaging of red blood cells using an atomic force microscope. J. Histochem. Cytochem. 48, 719–724.PubMedGoogle Scholar
  8. 8.
    Nowakowski, R., Luckham, P., and Winlove, P. (2001) Imaging erythrocytes under physiological conditions by atomic force microscopy. Biochim. Biophys. Acta. 1514, 170–176.PubMedCrossRefGoogle Scholar
  9. 9.
    Scheffer, L., Bitler, A., Ben-Jacob, E., and Korenstein, R. (2001) Atomic force pulling: probing the local elasticity of the cell membrane. Eur. Biophys. J. 30, 83–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Yamashina, S. and Katsumata, O. (2000) Structural analysis of red blood cell membrane with an atomic force microscope. J. Elect. Microsc. (Japan) 49, 445–451.Google Scholar
  11. 11.
    Swihart, A. H., Mikrut, J. M., Ketterson, J. B., and MacDonald, R. C. (2001) Atomic force microscopy of the erythrocyte membrane skeleton. J. Microscr. 204, 212–225.CrossRefGoogle Scholar
  12. 12.
    Butt, H.-J., Downing, K. H., and Hansma, P. K. (1990) Imaging the membrane protein bacteriorhodopsin with the atomic force microscope. Biophys. J. 58, 1473–1480.PubMedGoogle Scholar
  13. 13.
    Lyubchenko, Y. L., Oden, P. I., Lampner, D., Lindsay, S. M., and Dunker, K. A. (1993) Atomic force microscopy of DNA and bacteriophage in air, water and propanol: the role of adhesion forces. Nucl. Acids Res. 21, 1117–1123.PubMedCrossRefGoogle Scholar
  14. 14.
    A-Hassan, E., Heinz, W. F., Antonik, M. D., D'Costa, N. P., Nageswaran, S., Schoenenberger, C.-A., and Hoh, J. H. (1998) Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564–1578.PubMedGoogle Scholar
  15. 15.
    Ziegler, U., Vinckier, A., Kernen, P., Zeisel, D., Biber, J., Semenza, G., Murer, H., and Groscurth, P. (1998) Preparation of basal cell membranes for scanning probe microscopy. FEBS Lett. 436, 179–184.PubMedCrossRefGoogle Scholar
  16. 16.
    Ikai, A., Afrin, R., Itoh, A., Thogerson, H. C., Hayashi, Y., and Osada, T. (2002) Force measurements for membrane protein manipulation. Colloids Surface B: Biointerfaces 23, 165–171.CrossRefGoogle Scholar
  17. 17.
    Marchesi, V. T. (1979) Functional proteins of the human red blood cell membrane. Semin. Hematol. 16, 8.Google Scholar
  18. 18.
    Kornfeld, R. and Kornfeld, S. (1970) The structure of a phytohemagglutinin receptor site from human erythrocytes. J. Biol. Chem. 245, 2536–2545.PubMedGoogle Scholar
  19. 19.
    Cummings, R. D. and Kornfeld, S. (1982) Characterization of the structural determinants required for the high affinity interaction of Asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J. Biol. Chem. 257, 11230–11234.PubMedGoogle Scholar
  20. 20.
    Furthmayr, H., Kahane, I., and Marchesi, V. (1976) Isolation of the major intrinsic transmembrane protein of the human erythrocyte membrane. J. Membr. Biol. 26, 173–187PubMedCrossRefGoogle Scholar
  21. 21.
    Byers, T. J. and Branton, D. (1985) Visualization of the protein associations in the erythrocyte membrane skeleton. Proc. Natl. Acad. Sci. USA. 82, 6153–6157.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu, S. C., Derick, L. H., and Palek, J. (1987) Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J. Cell. Biol. 104, 527–536.PubMedCrossRefGoogle Scholar
  23. 23.
    Marchesi, V. T. and Steers, E. (1968) Selective solubilization of a protein component of the red cell membrane. Science 159, 203.PubMedCrossRefGoogle Scholar
  24. 24.
    Shotten, D. M., Burke, B. E., and Branton, D. (1979) The molecular structure of human erythrocyte spectrin: biophysical and electron microscopic studies. J. Mol. Biol. 131, 303–329CrossRefGoogle Scholar
  25. 25.
    Ungewickell, E. and Gratzer, W. (1978) Self-association of human spectrin: a thermodynamic and kinetic study. Eur. J. Biochem. 88, 379–385.PubMedCrossRefGoogle Scholar
  26. 26.
    Ji, T. H., Kiehm, D. J., and Middaugh, G. R. (1980) Presence of spectrin tetramer on the erythrocyte membrane. J. Biol. Chem. 255, 2990–2993.PubMedGoogle Scholar
  27. 27.
    Ungewickell, E., Bennett, P. M., Calvert, R., Ohanian, V., and Gratzer, W. B. (1979) In vitro formation of a complex between cytoskeletal proteins of human erythrocytes. Nature 280, 811–814.PubMedCrossRefGoogle Scholar
  28. 28.
    Cohen, C. M., Tyler, J. M., and Branton, D. (1980) Spectrin-actin association studied by electron microscopy of shadowed preparation. Cell 21, 875–883.PubMedCrossRefGoogle Scholar
  29. 29.
    Fowler, J. C. and Taylor, D. L. (1980) Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium. J. Cell. Biol. 85, 361–376.PubMedCrossRefGoogle Scholar
  30. 30.
    Shen, B. W., Josephs, R., and Steck, T. L. (1986) Ultrastructure of the intact skeleton of the human erythrocyte membrane. J. Cell. Biol. 102, 997–1006.PubMedCrossRefGoogle Scholar
  31. 31.
    Ursitti, J. A., Pumplin, D. W., Wade, J. B., and Bloch, R. J. (1991) Ultrastructure of the human erythrocyte cytoskeleton and its attachment to the membrane. Cell. Motil. Cytoskel. 19, 227–243.CrossRefGoogle Scholar
  32. 32.
    Ohno, S., Terada, N., Fujii, Y., and Ueda, H. (1994) Membrane skeleton in fresh unfixed erythrocytes as revealed by a rapid-freezing and deep-etching method. J. Anat. 185, 415–420.PubMedGoogle Scholar
  33. 33.
    Takeuchi, M., Miyamoto, H., Sako, Y., Komizu, H., and Kusumi, A. (1998) Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy. Biophys. J. 74, 2171–2183.PubMedGoogle Scholar
  34. 34.
    Garcia, C. R. S., Takeuschi, M., Yoshioka, K., and Miyamoto, H. (1997) Imaging Plasmodium falciparum-infected ghost and parasite by atomic force microscopy. J. Struct. Biol. 119, 92–98PubMedCrossRefGoogle Scholar
  35. 35.
    Rotsch, C. and Radmacher, M. (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J. 78, 520–535.PubMedGoogle Scholar
  36. 36.
    Haga, H., Sasaki, S., Kawabata, K., Ito, E., Ushiki, T., and Sambongi, T. U. (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82, 253–258.PubMedCrossRefGoogle Scholar
  37. 37.
    Hofmann, U. G., Rotsch, C., Parak, W. J., and Radmacher, M. (1997) Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope J. Struct. Biol. 119, 84–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Rotsch, C., Braet, F., Wisse, E., and Radmacher, M. (1997) AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol. Int. 21, 685–696.PubMedCrossRefGoogle Scholar
  39. 39.
    Hoh, J. H. and Schoenenberger, C.-A. (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell. Sci. 107, 1105–1114.PubMedGoogle Scholar
  40. 40.
    Le Grimellec, C., Lesniewska, E., Cachia, C., Schreiber, J. P., Fornel, F. D., and Goudonnet, J. P. (1994) Imaging the membrane surface of MDCK cells by atomic force microscopy. Biophys. J. 67, 36–41.PubMedGoogle Scholar
  41. 41.
    Henderson, E. (1994) Imaging of living cells by atomic force microscopy. Proc. Surf. Sci. 46, 39–60.CrossRefGoogle Scholar
  42. 42.
    Schaefer, D. M., Carpenter, M., Gady, B., Reifenberger, R., DeMejo, L. P., and Rimai, D. S. (1995) Surface roughness and its influence on particle adhesion using atomic force techniques. J. Adhes. Sci. Technol. 9, 1049–1062.Google Scholar
  43. 43.
    Webb, K., Hlady, V., and Tresco, P. A. (1998) Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J. Biomed. Mater. Res. 41, 422–430.PubMedCrossRefGoogle Scholar
  44. 44.
    Aebersold, R. H., Teplow, D. B., Hood, L. E., and Kent, S. B. H. (1986) Electroblotting onto activated glass. J. Biol. Chem. 261, 4229–4238.PubMedGoogle Scholar
  45. 45.
    Engel, A., Hoenger, A., Hefti, A., Henn, C., Ford, R., Kistler, C. J., and Zulauf, M. (1992) Assembly of 2-D membrane protein crystals: dynamics, crystal order, and fidelity of structure analysis by electron microscopy. J. Struct. Biol. 109, 219–234.PubMedCrossRefGoogle Scholar
  46. 46.
    Lutz, H. U., Stammler, P., Fasler, S., Ingold, M., and Fehr, J. (1992) Density separation of human red blood cells on self forming Percoll gradients: correlation with cell age. Biochim. Biophys. Acta. 1116, 1–10.PubMedGoogle Scholar
  47. 47.
    Romero, P. J., Romero, E. A., and B. M. D. W. (1997) Ionic calcium content of light dense human red cells separated by percoll density gradients Biochim. Biophys. Acta. 1323, 23–28.PubMedCrossRefGoogle Scholar
  48. 48.
    Linder, A., Weiland, U., and Apell, H.-J. (1999) Novel polymer substrates for SFM investigation of living cells, biological membranes, and proteins. J. Struct. Biol. 126, 16–26.PubMedCrossRefGoogle Scholar
  49. 49.
    Timme, A. H. (1981) The ultrastructure of the erythrocyte cytoskeleton at neutral and reduced pH. J. Ultrastr. Res. 77, 199–209.CrossRefGoogle Scholar
  50. 50.
    Jenney, C. R., DeFife, K. M., Colton, E., and Anderson, J. M. (1998) Human monocyte/macrophage adhesion, macrophage motility, and IL-4-induced foreign body giant cell formation on silance-modified surfaces in vitro. J. Biomed. Mater. Res. 41, 171–184.PubMedCrossRefGoogle Scholar
  51. 51.
    Muller, D. J., Amrein, M., and Engel, A. (1997) Adsorption of biological molecules to a solid support for scanning probe microscopy. J. Struct. Biol. 119, 172–188.PubMedCrossRefGoogle Scholar
  52. 52.
    Shao, Z., Mou, J., Czajkowsky, D. M., Yang, J., and Yuan, J.-Y. (1996) Biological atomic force microscopy: what is achieved and what is needed. Adv. Phys. 45, 1–86.CrossRefGoogle Scholar
  53. 53.
    Weber, T. H. (1969) Isolation and characterization of a lymphocyte-stimulating leucoagglutinin from red kidney beans. (Phaseolos vulgaris). Scand. J. Clin. Lab. Invest. Suppl. 111, 1–80.PubMedGoogle Scholar
  54. 54.
    Yachnin, S. and Svenson, R. (1972) The immunological and physicochemical properties of mitogenic proteins derived from Phaseouls vulgaris. Immunology 22, 871–883.PubMedGoogle Scholar
  55. 55.
    Leavitt, R. D., Felsted, R. L., and Bachur, N. R. (1977) Biological and biochemical properties of Phaseolus vulgaris isolectins. J. Biol. Chem. 252, 2961–2966.PubMedGoogle Scholar
  56. 56.
    Egorin, M. J., Bachur, S. M., Felsted, R. L., Leavitt, R. D., and Bachur, N. R. (1979) Phaseolus vulgaris isolectin binding to human erythrocytes. J. Biol. Chem. 254, 894–898.PubMedGoogle Scholar
  57. 57.
    Saxon, E. and Bertozzi, C. R. (2001) Chemical and biological strategies for engineering cell surface glycosylation. Annu. Rev. Cell Dev. Biol. 17, 1–23.PubMedCrossRefGoogle Scholar
  58. 58.
    Gorelik, E., Galili, U., and Raz, A. (2001) On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metast. Rev. 20, 245–277.CrossRefGoogle Scholar
  59. 59.
    Loris, R. (2002) Principles of structures of animal and plant lectins. Biochim. Biophys. Acta. 1572, 198–208.PubMedGoogle Scholar
  60. 60.
    Kilpatrick, D. C. (2002) Animal lectins: a historical introduction and overview. Biochim. Biophys. Acta. 1572, 187–197.PubMedGoogle Scholar
  61. 61.
    Rudiger, H. and Gabius, H.-J. (2002) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconjugate J. 18, 589–613.CrossRefGoogle Scholar
  62. 62.
    Putman, C. A. J., Werf, K. O. V. d., Grooth, B. G. D., Hulst, N. F. V., and Greve, J. (1994) Tapping mode atomic force microscopy in liquid. Appl. Phys. Lett. 64, 2.CrossRefGoogle Scholar
  63. 63.
    Moller, C., Allen, M., Elings, V., Engel, A., and Muller, D. J. (1999) Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. Biophys. J. 77, 1150–1158.PubMedCrossRefGoogle Scholar
  64. 64.
    Moloni, K., Buss, M. R., and Andres, R. P. (1999) Tapping mode scanning force microscopy in water using a carbon nanotube probe. Ultramicroscopy 80, 237–246.CrossRefGoogle Scholar
  65. 65.
    Danon, D., Marikovsky, Y., and Fischler, H. (1984) Surface charge of old, transformed and experimentally deteriorated erythrocytes. Ann. NY. Acad. Sci. 416, 149–158.CrossRefGoogle Scholar
  66. 66.
    Danon, D. and Marikovsky, Y. (1988) The aging of the red blood cell. A multifactor process. Blood Cells 14, 7–15.PubMedGoogle Scholar
  67. 67.
    Cohen, N. S., Ekholm, J. E., Luthra, M. G., and Hanahan, D. J. (1976) Biochemical characterization of desity-separated human erythrocytes. Biochim. Biophys. Acta. 419, 229–242.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Fei Liu
    • 1
  • Joel Burgess
    • 1
  • Hiroshi Mizukami
    • 2
  • Agnes Ostafin
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversity of Notre DameNotre Dame
  2. 2.Department of Biological ScienceWayne State UniversityDetroit

Personalised recommendations