Cell Biochemistry and Biophysics

, Volume 38, Issue 2, pp 215–237 | Cite as

Voltage-gated sodium channel toxins

Poisons, probes, and future promise
Review Article

Abstract

Neurotoxins have served as invaluable agents for identification, purification, and functional characterization of voltage-gated ion channels. Multiple classes of these toxins, which target voltage-gated Na+ channels via high-affinity binding to distinct but allosterically coupled sites, have been identified. The toxins are chemically diverse, including guanidinium heterocycles, a variety of structurally unrelated alkaloids, and multiple families of nonhomologous polypeptides having either related or distinct functions. This review describes the biochemistry and pharmacology of these agents, and summarizes the structure-function relationships underlying their interaction with molecular targets. In addition, we explore recent advances in the use of these toxins as molecular scaffolding agents, drugs, and insecticides.

Index Entries

Voltage-gated sodium channel peptide neurotoxins drug design heart 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., et al. (1998) The structure of the potassium channel: molecular basis of K+-conduction and selectivity. Science 280, 69–77.PubMedGoogle Scholar
  2. 2.
    MacKinnon, R., Cohen, S. L., Kuo, A., Lee, A., and Chait, B. T. (1998) Structural conservation in prokaryotic and eukaryotic potassium channels. Science 280, 106–109.PubMedGoogle Scholar
  3. 3.
    Goldin, A. L., Barchi, R. L., Caldwell, J. H., Hofmann, F., Howe, J. R., Hunter, J. C., et al. (2000) Nomenclature of voltage-gated sodium channels. Neuron 28, 365–368.PubMedGoogle Scholar
  4. 4.
    Catterall, W. A. (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13–25.PubMedGoogle Scholar
  5. 5.
    Catterall, W. A. (2002) Molcular mechanisms of gating and drug block of sodium channels. Novartis Found. Symp. 241, 206–218.PubMedGoogle Scholar
  6. 6.
    Lehmann-Horn, F., and Jurkat-Rott, K. (1999) Voltage-gated ion channels and hereditary disease. Physiol. Rev. 79, 1317–1372.PubMedGoogle Scholar
  7. 7.
    Yang, J. S., Bennett, P. B., Makita, N., George, A. L., and Barchi, R. L. (1993) Expression of the sodium channel beta 1 subunit in rat skeletal muscle is selectively associated with the tetrodotoxin-sensitive alpha subunit isoform. Neuron 11, 915–922.PubMedGoogle Scholar
  8. 8.
    Cohen, S. A. and Levitt, L. K. (1993) Partial characterization of the rH1 sodium channel protein from rat heart using subtype-specific antibodies. Circ Res. 73, 735–742.PubMedGoogle Scholar
  9. 9.
    Fahmi, A. I., Patel, M., Stevens, E. B., Fowden, A. L., John, J. E., Lee, K., et al. (2001) The sodium channel β-subunit SCN3b modulates the kinetics of SCN5a and is expressed heterogeneously in sheep heart. J. Physiol. 537, 693–700.PubMedGoogle Scholar
  10. 10.
    Stuhmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, H., et al. (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339, 597–603.PubMedGoogle Scholar
  11. 11.
    Aggarwal, S. K. and MacKinnon, R. (1996) Contribution of the S4 segment to gating charge in the shaker K-channel. Neuron 16, 1169–1177.PubMedGoogle Scholar
  12. 12.
    Mannuzzu, L. M., Maronne, M. M. and Isacoff, E. Y. (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271, 213–216.PubMedGoogle Scholar
  13. 13.
    Larsson, H. P., Baker, O. S., Dalvinder, S. D., and Isacoff, E. Y. (1996) Transmembrane movement of the shaker K+-channel S4. Neuron 16, 387–397.PubMedGoogle Scholar
  14. 14.
    Baker, O. S., Larsson, H. P., Mannuzzu, L. M., and Isacoff, E. Y. (1998) Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K-channel gating. Neuron 20, 1283–1294.PubMedGoogle Scholar
  15. 15.
    Yang, N., and Horn, R. (1995) Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15, 213–218.PubMedGoogle Scholar
  16. 16.
    Yang, N., George, A. L., and Horn, R. (1996) Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113–122.PubMedGoogle Scholar
  17. 17.
    Yang, N., George, A. L., and Horn, R. (1997) Probing the outer vestibule of a sodium channel voltage sensor. Biophys. J. 73, 2260–2268.PubMedGoogle Scholar
  18. 18.
    Kontis, K. J., Rounaghi, A., and Goldin, A. L. (1997) Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains. J. Gen. Physiol. 110, 391–401.PubMedGoogle Scholar
  19. 19.
    Chen, L. Q., Santarelli, V., Horn, R., and Kallen, R. G. (1996) A unique role for the S4 segment of domain 4 in the inactivation of sodium channels. J. Gen. Physiol. 108, 549–556.PubMedGoogle Scholar
  20. 20.
    Sheets, M. F., Kyle, I. W., Kallen, R. G., and Hanck, D. A. (1999) The Na+ channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV S4. Biophys. J. 77, 747–757.PubMedGoogle Scholar
  21. 21.
    Sato, C., Ueno, Y., Asai, K., Takahashi, K., Sato, M., Engel, A., and Fuhiyoshi, Y. (2001) The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 409, 1047–1051.PubMedGoogle Scholar
  22. 22.
    Vassilev, P. M., Scheuer, T., and Catterall, W. A. (1988) Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241, 1658–1661.PubMedGoogle Scholar
  23. 23.
    Moorman, J. R., Kirsch, G. E., Brown, A. M. and Joho, R. H. (1990) Changes in sodium channel gating produced by point mutations in a cytoplasmic linker. Science 250, 688–691.PubMedGoogle Scholar
  24. 24.
    West, J. W., Patton, D. E., Scheuer, T., Wang, Y., Goldin, A. L., and Catterall, W. A. (1992) A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. PNAS 89, 10910–10914.PubMedGoogle Scholar
  25. 25.
    McPhee, J. C., Ragsdale, D. S., Scheuer, T., and Catterall, W. A. (1995) A critical role for transmembrane segment IVS6 of the sodium channel a subunit in fast inactivation. J. Biol. Chem. 270, 12025–12034.PubMedGoogle Scholar
  26. 26.
    McPhee, J. C., Ragsdale, D., Scheuer, T., and Catterall, W. A. (1998) A critical role for the S4–S5 intracellular loop in domain IV of the sodium channel a subunit in fast inactivation. J. Biol. Chem. 273, 1121–1129.PubMedGoogle Scholar
  27. 27.
    Smith, M. R. and Goldin, A. L. (1997) Interaction between the sodium channel inactivation linker and domain III S4–S5. Biophys. J. 73, 1885–1895.PubMedGoogle Scholar
  28. 28.
    Filatov, G. N., Nguyen, T. P., Kraner, S. D., and Barchi, R. L. (1998) Inactivation and secondary structure in the D4/S4–5 region of the SkM1 sodium channel. J. Gen. Physiol. 111, 703–715.PubMedGoogle Scholar
  29. 29.
    Hoshi, T., Zagotta, W. N., and Aldrich, R. W. (1990) Biophysical and molecular mechanisms of shaker potassium channel inactivation. Science 250, 533–538.PubMedGoogle Scholar
  30. 30.
    Isacoff, E. Y., Jan, Y. N., and Jan, L. Y. (1991) Putative receptor for the cytoplasmic inactivation gate in the shaker K+ channel. Nature 353, 86–90.PubMedGoogle Scholar
  31. 31.
    Akopian, A. N., Sivilotti, L., and Wood, J. N. (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257–262.PubMedGoogle Scholar
  32. 32.
    Black, J. A., Dib-Hajj, S., Baker, D., Newcombe, J., Cuzner, M. L. and Waxman, S. G. (2000) Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis. Proc. Natl. Acad. Sci. USA 97, 11598–11602.PubMedGoogle Scholar
  33. 33.
    Peng, K., Shu, Q., Liu, Z., and Liang, S. (2002) Function and solution structure of Huwentoxin-IV, a potent neuronal TTX-sensitive sodium channel antagonist from Chinese bird spider Selenocosmia huwena. J. Biol. Chem. 277, 47,564–47,571.Google Scholar
  34. 34.
    Catterall, W. A. (1977) Activation of the action potential Na+-ionophore by neurotoxins: an allosteric model. J. Biol. Chem. 252, 8669–8676.PubMedGoogle Scholar
  35. 35.
    Narahashi, T., Moore, J. W., and Scott, W. R. (1964) Basis of tetrodotoxin's selectivity in blockage of squid axons. J. Gen. Physiol. 47, 965–974.PubMedGoogle Scholar
  36. 36.
    Hartshorne, R. P. and Catterall, W. A. (1984) The sodium channel from rat brain: purification and subunit composition. J. Biol. Chem. 259, 1667–1675.PubMedGoogle Scholar
  37. 37.
    Noda, M., Suzuki, H., Numa, S., and Stuhmer, W. (1989) A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett. 259, 213–216.PubMedGoogle Scholar
  38. 38.
    Terlau, H., Heinemann, S. H., Stuhmer, W., Pusch, M., Conti, F., Imoto, K., and Numa, S. (1991) Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett. 293, 93–96.PubMedGoogle Scholar
  39. 39.
    Satin, J., Kyle, J. W., Chen, M., Bell, P., Cribbs, L. L., Fozzard, H. A., and Rogart, R. B. (1992) A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science 256, 1202–1205.PubMedGoogle Scholar
  40. 40.
    Backx, P. H., Yue, D. T., Lawrence, J. H., Marban, E., and Tomaselli, G. F. (1992) Molecular localization of an ion-binding site within the pore of mammalian sodium channels. Science 257, 248–251.PubMedGoogle Scholar
  41. 41.
    Heinemann, S. H., Terlau, H., and Imoto, K. (1992) Molecular basis for pharmacological differences between brain and cardiac sodium channels. Pflugers Arch. 422, 90–92.PubMedGoogle Scholar
  42. 42.
    Sivilotti, L., Okuse, K., Akopian, A. N., Moss, S., and Wood, J. N. (1997) A single serine residue confers tetrodotoxin insensitivity on the rat sensory neuron specific sodium channel SNS. FEBS Lett. 409, 49–52.PubMedGoogle Scholar
  43. 43.
    Lipkind, G. and Fozzard, H. A. (1994) A structural model of the tetrodotoxin and saxitoxin binding site of the Na-channel. Biophys. J. 66, 1–13.PubMedGoogle Scholar
  44. 44.
    Lipkind, G. M. and Fozzard, H. A. (2000) KcsA crystal structure as framework for a molecular model of the Na+ channel pore. Biochemistry 39, 8161–8170.PubMedGoogle Scholar
  45. 45.
    Cruz, L., Gray, W. R., Olivera, B. M., Zeikus, R. D., Kerr, L., Yoshikami, J. D., and Moczydlowski, E. (1985) Conus geographus toxins that discriminate between neuronal muscle sodium channels. J. Biol. Chem. 260, 9280–9288.PubMedGoogle Scholar
  46. 46.
    Ohizumi, Y., Nakamura, H., Kobayashi, J., and Catterall, W. A. (1986) Specific inhibition of saxitoxin binding to skeletal muscle sodium channels by geographutoxin II, a polypeptide channel blocker. J. Biol. Chem. 261, 6149–6152.PubMedGoogle Scholar
  47. 47.
    Shon, K. J., Olivera, B. M., Watkins, M., Jacobsen, R. B., Gray, W. R., Floresca, C.Z., et al. (1998) μ-Conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na+ channel subtypes. J. Neurosci. 18, 4473–4481.PubMedGoogle Scholar
  48. 48.
    Safo, P., Rosenbaum, T., Shcherbatko, A., Choi, D. Y., Han, E., Toledo-Aral, J. J., Olivera, B. M., Brehm, P., and Mandel, G. (2000) Distinction among neutronal subtypes of voltage-activated sodium channels by μ-conotoxin PIIIA. J. Neurosci. 20, 76–80.PubMedGoogle Scholar
  49. 49.
    Nielsen, K. J., Watson, M., Adams, D. J., Hammarstrom, A. K., Gage, P. W., Hill, J. M., et al. (2002) Solution structure of μ-conotoxin PIIIA, a perferential inhibitor of persistent tetrodotoxin-sensitive sodium channels. J. Biol. Chem. 277, 27247–27255.PubMedGoogle Scholar
  50. 50.
    Lancelin, J. M., Kohda, D., Tate, S., Yanagawa, Y., Abe, T., Satake, M., et al. (1991) Tertiary structure of conotoxin GIIIA in aqueous solution. Biochemistry 30, 6908–6916.PubMedGoogle Scholar
  51. 51.
    Hui, K., Lipkind, G., Fozzard, H. A., and French, R. J. (2002) Electrostatic and steric contributions to block of the skeletal muscle sodium channel by μ-conotoxin. J. Gen. Physiol. 119, 45–54.PubMedGoogle Scholar
  52. 52.
    French, R. J., Sochaczewski, E. P., Zamponi, G. W., Becker, S., Kularatna, A. S., and Horn, R. (1996) Interactions between a pore-blocking peptide and the voltage sensor of the sodium channel: an electrostatic approach to channel geometry. Neuron 16, 407–413.PubMedGoogle Scholar
  53. 53.
    Dudley, S. C., Todt, H., Lipkind, G., and Fozzard, H. A. (1995) A μ-conotoxin-insensitive Na-channel mutant: possible localization of a binding site at the outer vestibule. Biophys. J. 69, 1657–1665.PubMedGoogle Scholar
  54. 54.
    Chang, N. S., French, R. J., Lipkind, G. M., Fozzard, H. A., and Dudley, S. C. (1998) Predominant interactions between μ-conotoxin Arg-13 and the skeletal muscle Na channel localized by mutant cycle analysis. Biochemistry 37, 4407–4419.PubMedGoogle Scholar
  55. 55.
    Cruz, L. J., Kupryszewski, G., LeCheminant, G. W., Gray, W. R., Olivera, B. M., and Rivier, J. (1989) μ-Conotoxin GIIIA, a peptide ligand for muscle sodium channels: chemical synthesis, radiolabeling, and receptor characterization. Biochemistry 28, 3437–3442.PubMedGoogle Scholar
  56. 56.
    Becker, S. E., Prusak-Sochaczewski, G., Zamponi, A. G., Beck-Sickinger, R., Gordon, D., and French, R. J. (1992) Action of derivatives of μ-conotoxin GIIIA on sodium channels. Single amino acid substitutions in the toxin separately affect association and dissociation rates. Biochemistry 31, 8229–8238.PubMedGoogle Scholar
  57. 57.
    Chahine, M., Chen, L. Q., Fotouhi, N., Walsky, R., Fry, D., Santarelli, V., Horn, R., and Kallen, R. G. (1995) Characterizing the μ-conotoxin binding site on voltage-sensitive sodium channels with toxin analogs and channel mutations. Receptors Channels 3, 161–174.PubMedGoogle Scholar
  58. 58.
    Cummings, T. R., Agueco, F., and Dib-Hajj, S. D. (2002) Critical molecular determinants of voltage-gated sodium channel sensitivity to μ-conotoxins GIIIA/B. Mol. Pharmacol. 61, 1192–1201.Google Scholar
  59. 59.
    Chahine, M., Sirois, J., Marcotte, P., Chen, L. Q., and Kallen, R. G. (1998) Extrapore residues of the S5−S6 loop of domain II of the voltage-gated skeletal muscle sodium channel (rSkM1) contribute to the μ-conotoxin GIIIA binding site. Biophys. J. 75, 236–246.PubMedGoogle Scholar
  60. 60.
    Dudley, S. C., Chang, N., Hall, J., Lipkind, G., Fozzard, H. A. and French, R. J. (2000) μ-Conotoxin GIIIA interactions with the voltage-gated Na+ channel predict a clockwise arrangement of the domains. J. Gen. Physiol. 116, 679–689.PubMedGoogle Scholar
  61. 61.
    Li, R. A., Ennis, I. L., French, R. J., Dudley, S. C., Tomaselli, G. F., and Marban, E. (2001) Clockwise domain arrangement of the sodium channel revealed by μ-conotoxin GIIIA docking orientations. J. Biol. Chem. 276, 11072–11077.PubMedGoogle Scholar
  62. 62.
    Tomaselli, G. F., Chiamvinonvat, N., Nuss, H. B., Balser, J. R., Perez-Garcia, M. T., Xu, R.H., et al. (1995) A mutation in the pore of the sodium channel alters gating. Biophys. J. 68, 1814–1827.PubMedGoogle Scholar
  63. 63.
    Catterall, W. A. (1975) Cooperative activation of the action potential Na+-ionophore by neurotoxins. PNAS 72, 1782–1786.PubMedGoogle Scholar
  64. 64.
    Catterall, W. A. (1976) Purification of a toxic protein from scorpion venom which activates the action potential Na+ ionophore. J. Biol. Chem. 251, 5528–5536.PubMedGoogle Scholar
  65. 65.
    Catterall, W. A., Morrow, C. S., Daly, J. W., and Brown, G. B. (1981) Binding of batrachotoxinin A 20-α-benzoate to a receptor site associated with sodium channels in synaptic nerve ending particles. J. Biol. Chem. 256, 8922–8927.PubMedGoogle Scholar
  66. 66.
    Postma, S. W., and Catterall, W. A. (1984) Inhibition of binding of [3H]batrachotoxinin A anesthetics. Mol. Pharmacol. 25, 219–227.PubMedGoogle Scholar
  67. 67.
    Trainer, V. L., Brown, G. B., and Catterall, W. A. (1996) Site of covalent labeling by a photoreactive batrachotoxin derivative near transmembrane segment IS6 of the sodium channel α subunit. J. Biol. Chem. 271, 11261–11227.PubMedGoogle Scholar
  68. 68.
    Wang, S. Y., and Wang, G. K. (1998) Point mutations in segment I-S6 render voltage-gated Na+ channels resistant to batrachotoxin. PNAS 95, 2653–2658.PubMedGoogle Scholar
  69. 69.
    Linford, N. J., Cantrell, A. R., Qu, Y., Scheuer, T., and Catterall, W. A. (1998) Interaction of batrachotoxin with the local anesthetic receptor site in transmembrane segment IVS6 of the voltage-gated sodium channel. PNAS 95, 13947–13952.PubMedGoogle Scholar
  70. 70.
    Wang, S. Y., and Wang, G. K. (1999) Batrachotoxin-resistant Na+ channels derived from point mutations in transmembrane segment D4-S6. Biophys. J. 76, 3141–3149.PubMedGoogle Scholar
  71. 71.
    Wang, S. Y., Nau, C., and Wang, G. K. (2000) Residues in Na+ channel D3-S6 segment modulate both batrachotoxin and local anesthetic affinities. Biophys. J. 79, 1379–1387.PubMedGoogle Scholar
  72. 72.
    Wang, S. Y., Barile, M., and Wang, G. K. (2001) Disparate role of Na+ channel D2-S6 residues in batrachotoxin and local anesthetic action. Mol. Pharmacol. 59, 1100–1107.PubMedGoogle Scholar
  73. 73.
    Norton, R. S. (1991) Structure and structure-function relationships of sea anemone proteins that interact with the sodium channel. Toxicon 29, 1051–1084.PubMedGoogle Scholar
  74. 74.
    Catterall, W. A. (1988) Structure and function of voltage-sensitive ion channels. Science 242, 50–61.PubMedGoogle Scholar
  75. 75.
    Cannon, S. C. and Corey, D. P. (1993) Loss of Na+-channel inactivation by anemone toxin (ATX II) mimics the myotonic state in hyperkalaemic periodic paralysis. J. Physiol. 466, 501–520.PubMedGoogle Scholar
  76. 76.
    Chahine, M., George, M. L., Zhou, M., Ji, J. S., Sun, W., Barchi, R. L., and Horn, R. (1994) Na+ channel mutation in paramyotonia congenita uncouple inactivation from activation. Neuron 12, 281–294.PubMedGoogle Scholar
  77. 77.
    Cummins, T. R., and Sigworth, F. J. (1996) Impaired slow inactivation in mutant sodium channels. Biophys. J. 71, 227–236.PubMedCrossRefGoogle Scholar
  78. 78.
    Jurkatt-Rott, K., Mitrovic, N., Hang, C., Kouzmekine, A., Iaizzo, P., Herzog, J., et al. (2000) Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current. PNAS 97, 9549–9554.Google Scholar
  79. 79.
    Yang, N., Sen, J., Zhou, M., Ptacek, L. J., Barchi, R. L., Horn, R., and George, A. L. (1994) Na+ channel mutations in paramyotonia congenita exhibit similar biophysical phenotypes in vitro. PNAS 91, 12785.PubMedGoogle Scholar
  80. 80.
    Srinivasan, K. N., Gopalakrishnakone, P., Tan, P. T., Chew, K. C., Cheng, B., Kini, R. M., et al. (2002). SCORPION, a molecular database of scorpion toxins. Toxicon 40, 23–31.PubMedGoogle Scholar
  81. 81.
    Oren, D. A., Froy, O., Amit, E., Kleinberger-Doron, N., Gurevitz, M., Shaanan, B. (1998) An excitatory scorpion toxin with a distinctive feature: an additional α helix at the C terminus and its implications for interaction with insect sodium channels. Structure 6, 1095–1103.PubMedGoogle Scholar
  82. 82.
    Massensini, A. R., Suckling, J., Brammer, M. J., Moraes-Santos, T., Gomez, M. V., and Romano-Silva, M. A. (2002) Tracking sodium channels in live cells: confocal imaging using fluorescently labeled toxins. J. Neurosci. Methods 116, 189–196.PubMedGoogle Scholar
  83. 83.
    Kharrat, R., Darbon, H., Rochat, H., and Granier, C. (1989) Structure/activity relationships of scorpion α-toxins. Multiple residues contribute to the interaction with receptors. Eur. J. Biochem. 181, 381–390.PubMedGoogle Scholar
  84. 84.
    Fontecilla-Camps, J. C., Habersetzer-Rochat, C., and Rochat, H. (1988) Orthorhombic crystals and three-dimensional structure of the potent toxin II from the scorpion Androctonus australis Hector. PNAS 85, 7443–7447.PubMedGoogle Scholar
  85. 85.
    Zilberberg, N., Froy, O., Gordon, D., Loret, E., Arad, D., and Gurevitz, M. (1997) Identification of structural elements of a scorpion α-neurotoxin important for receptor-site recognition. J. Biol. Chem. 272, 14810–14816.PubMedGoogle Scholar
  86. 86.
    Froy, O., Zilberberg, N., Gordon, D., Turkov, M., Stankiewicx, M., Pelhate, M., et al. (1999) The putative bioactive surface of insect-selective scorpion excitatory neurotoxins. J. Biol. Chem. 274, 5769–5776.PubMedGoogle Scholar
  87. 87.
    Selisko, B., Garcia, C., Becerril, B., Delepierre, M., and Possani, L. D. (1996) An insect-specific toxin form Centruroides noxius Hoffmann. cDNA, primary structure, three-dimensional model and electrostatic surface potentials in comparison with other toxin variants. Eur. J. Biochem. 242, 235–242.PubMedGoogle Scholar
  88. 88.
    Catterall, W. A. and Beress, L. (1978) Sea anemone toxin and scorpion toxin share a common receptor site associated with the action potential sodium ionophore. J. Biol. Chem. 253, 7393–7396.PubMedGoogle Scholar
  89. 89.
    Dias-Kadambi, B. L., Drum, C. L., Hanck, D. A., and Blumenthal, K. M. (1996a) Leucine-18, a hydrophobic residue essential for high affinity binding of Anthopleurin-B to the voltage sensitive sodium channel. J. Biol. Chem. 271, 9422–9429.PubMedGoogle Scholar
  90. 90.
    Seibert, A. L., Rance, M., and Blumenthal, K. M. (2000) Asn-16 of Anthopleurin B interacts directly with voltage sensitive sodium channels. ASBMB abstract no. 945.Google Scholar
  91. 91.
    Khera, P. K., Benzinger, G. R., Lipkind, G., Drum, C. L., Hanck, D. A. and Blumenthal, K. M. (1995) Multiple cationic residues of anthopleuruin B that determine high affinity and channel isoform discrimination. Biochemistry 34, 8533–8541.PubMedGoogle Scholar
  92. 92.
    Benzinger, G. R., Kyle, J. W., Blumenthal, K. M., and Hanck, D. A. (1998) A specific interaction between the cardiac sodium channel and site-3 toxin anthopleurin B. J. Biol. Chem. 273, 80–84.PubMedGoogle Scholar
  93. 93.
    Dias-Kadambi, B. L., Combs, K. A., Drum, C. L., Hanck, D. A., and Blumenthal, K. M. (1996b) The role of exposed tryptophan residues in the activity of the cardiotonic polypeptide anthopleurin B. J. Biol. Chem. 271, 23828–23835.PubMedGoogle Scholar
  94. 94.
    Rogers, J. C., Qu, Y., Tanada, T., Scheuer, T., and Catterall, W. A. (1996) Molecular determinants of high affinity binding of α-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na-channel α-subunit. J. Biol. Chem. 271, 15950–15962.PubMedGoogle Scholar
  95. 95.
    Benzinger, G. R., Drum, C. L., Chen, L. Q., Kallen, R. G., and Hanck, D. A. (1997) Differences in the binding sites of two site-3 sodium channel toxins. Pflugers Arch. 434, 732–749.Google Scholar
  96. 96.
    Loret, E. P., Menendez, R., Mansuelle, P., Sampieri, F., and Rochat, H. (1994) Positively charged amino acid residues located similarly in sea anemone and scorpion toxins. J. Biol. Chem. 269, 16785–16788.PubMedGoogle Scholar
  97. 97.
    Kinoshita, E., Maejima, H., Yamaoka, K., Konno, K., Kawai, N., Shimizu, E., et al., (2001) Novel wasp toxin discriminates between neuronal and cardiac sodium channels. Mol. Pharmacol. 59, 1457–1463.PubMedGoogle Scholar
  98. 98.
    Little, M. J., Zappia, C., Gilles, N., Connor, M., Tyler, M. I., Martin-Eauclaire, M. F., et al. (1998) δ-Atracotoxins from australian funnel-web spiders compete with scorpion α-toxin binding but differentially modulate alkaloid toxin activation of voltage-gated sodium channels. J. Biol. Chem. 273, 27076–27083.PubMedGoogle Scholar
  99. 99.
    Fletcher, J. I., Chapman, B. E., Mackay, J. P., Howden, M. E., and King, G. F. (1997) The structure of versutoxin (δ-atracotoxin-Hv1) provides insights into the binding of site 3 neurotoxins to the voltage-gated sodium channel. Structure 5, 1525–1535.PubMedGoogle Scholar
  100. 100.
    Khera, P. K., and Blumenthal, K. M. (1994) Role of the cationic residues arginine 14 and lysine 48 in the function of the cardiotonic polypeptide anthopleurin B. J. Biol. Chem. 269, 921–925.PubMedGoogle Scholar
  101. 101.
    Cahalan, M. D. (1975) Modification of sodium channel gating in frog myelinated nerve fibres by Centruroides sculpturatus scorpion, venom. J. Physiol. 244, 511–534.PubMedGoogle Scholar
  102. 102.
    Jover, E., Couraud, F., and Rochat, H. (1980) Two types of scorpion neurotoxins characterized by their binding to two separate receptor sites on rat brain synaptosomes. Biochem. Biophys. Res. Commun. 95, 1607–1614.PubMedGoogle Scholar
  103. 103.
    Darbon, H., Jover, E., Couraud, F., and Rochat, H. (1983) Photoaffinity labeling of α- and β-scorption toxin receptors associated with rat brain sodium channels. Biochem. Biophys. Res. Commun. 115, 415–422.PubMedGoogle Scholar
  104. 104.
    Cestele, S., Qu, Y., Rogers, J. C., Rochat, H., Scheuer, T., and Catterall, W. A. (1998) Voltage sensor-trapping: enhanced activation of sodium channels by β-scorption toxin bound to the S3-S4 loop in domain II. Neuron 21, 919–931.PubMedGoogle Scholar
  105. 105.
    Cestele, S., Scheuer, T., Mantegazza, M., Rochat, H., and Catterall, W. A. (2001) Neutralization of gating charges in domain II of the sodium channel α-subunit enhances voltage-sensor tapping by a β-scorption toxin. J. Gen. Physiol. 118, 291–301.PubMedGoogle Scholar
  106. 106.
    Swartz, K. J., and MacKinnon, R. (1997) Hanatoxin modifies the gating of a voltage-dependent K-channel through multiple binding sites. Neuron 18, 665–673.PubMedGoogle Scholar
  107. 107.
    Takahashi, H., Kim, J. I., Min, H. J., Sato, K., Swartz, K. J., and Shimada, I. (2000) Solution structure of hanatoxin 1, a gating modifier of voltage-dependent K channels: common surface features of gating modifier toxins. J. Mol. Biol. 297, 771–780.PubMedGoogle Scholar
  108. 108.
    Li-Smerin, Y. and Swartz, K. J. (2000) Localization and molecular determinants of the hanatoxin receptors on the voltage-sensing domains of a K+-channel. J. Gen. Physiol. 115, 673–684.PubMedGoogle Scholar
  109. 109.
    Swartz, K. J., and MacKinnon, R. (1997b) Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K-channels. Neuron 18, 675–682.PubMedGoogle Scholar
  110. 110.
    Bontems, F., Roumestand, C., Gilquin, B., Menez, A., and Toma, F. (1991) Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. Science 254, 1521–1524.PubMedGoogle Scholar
  111. 111.
    Vita, C., Roumestand, C., Toma, F., and Menez A. (1995) Scorpion toxins as natural scaffolds for protein engineering. PNAS 92, 6404–6408.PubMedGoogle Scholar
  112. 112.
    Vita, C., Vizzavona, J., Drakopoulou, E., Zinn-Justin, S., Gilquin, B., and Menez, A. (1998) Novel miniproteins engineered by the transfer of active sites to small natural scaffolds. Biopolymers 47, 93–100.PubMedGoogle Scholar
  113. 113.
    Vita, C., Drakopoulou E., Vizzavona, J., Rochette, S., Martin, M., Menez, A., Roumestand, C., et al. (1999) Rational engineering of a miniprotein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein. PNAS 95, 13091–13096.Google Scholar
  114. 114.
    Miljanich, G. P. and Ramachandran, J. (1995) Antagonists of neuronal calcium channels: structure, function, and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 35, 707–734.PubMedGoogle Scholar
  115. 115.
    Wang, Y. X., Gao, D., Pettus, M., Phillips, C., Bowersox, S. S. (2000b) Interactions of intrathecally administered ziconotide, a selective blocker of neuronal N-type voltage-sensitive calcium channels, with morphine on nociception in rats. Pain 84, 271–281.PubMedGoogle Scholar
  116. 116.
    Lewis, R. J. (2000) Ion channel toxins and therapeutics: from cone snail venoms to ciguatera. Ther. Drug Monit. 22, 61–64.PubMedGoogle Scholar
  117. 117.
    Jain, K. K. (2000) An evaluation of intrathecal ziconotide for the treatment of chronic pain. Expert Opin. Investig. Drugs 9, 2403–2410.PubMedGoogle Scholar
  118. 118.
    Kalman, K., Pennington, M. W., Lanigan, M. D., Nguyen, A., Rauer, H., Mahnir, V., et al. (1998) ShK-Dap22, a potent KV1.3-specific immunosuppressive polypeptide. J. Biol. Chem. 273, 32697–32707.PubMedGoogle Scholar
  119. 119.
    Carmeliet, E. (1991) Ion channel agonists: expectations for therapy. Eur. Heart J. 12, Suppl F: 30–37.PubMedGoogle Scholar
  120. 120.
    Taylor, C. P., and Narasimban, L. S. (1997) Sodium channels and therapy of central nervous system diseases. Adv. Pharmacol. 39, 47–98.PubMedCrossRefGoogle Scholar
  121. 121.
    Shibata, S., Norton, T. R., Izumi, T., Matsuo, T., and Katsuki, S. (1976) A polypeptide from sea anemone (A. xanthogrammica) with potent positive inotropic action. J. Pharm. Exp. Ther. 199, 298.Google Scholar
  122. 122.
    Darbon, H., Weber, C., and Braun, W. (1991) Two-dimensional proton nuclear magnetic resonance study of AaH IT, an anti-insect toxin from the scorpion Androctonus australis, Hector. Sequential resonance assignments and folding of the polypeptide chain. Biochemistry 30, 1836–1845.PubMedGoogle Scholar
  123. 123.
    Tugarinov, V., Kustanovich, I., Zilberberg, N., Gurevitz, M., and Anglister, J. (1997) Solution structures of a highly insecticidal recombinant scorpion α-toxin and a mutant with increased activity. Biochemistry 36, 2414–2424.PubMedGoogle Scholar
  124. 124.
    Gilles, N., Krimm, I., Bouet, F., Froy, O., Gurevitz, M., Lancelin, J.-M., and Gordon, D. (2000) Structural implications on the interaction of scorpion α-like toxins with the sodium channel receptor site inferred from toxin iodination and pH-dependent binding. J. Neurochem. 75, 1735–1745.PubMedGoogle Scholar
  125. 125.
    Wang, X. H., Connor, M., Wilson, D., Wilson, H. I., Nicholson, G. M., Smith, R., et al. (2001) Discovery and structure of a potent and highly specific blocker of insect calcium channels. J. Biol. Chem. 276, 40306–40312.PubMedGoogle Scholar
  126. 126.
    Monks, S. A., Pallaghy, P. K., Scanlon, M. J., and Norton, R. S. (1995) Solution structure of the cardiostimulant polypeptide anthopleurin-B and comparison with anthopleurin-A. Structure 3, 791–803.PubMedGoogle Scholar
  127. 127.
    Wakamatsu, K., Kahda, D., Hatanaka, H., Lancelin, J. M., Ishida, Y., Oya, M., et al. (1992) Structure-activity relationships of μ-conotoxin GIIIA: Structure determination of active and inactive sodium channel blocker peptides by NMR and simulated annealing calculations. Biochemistry 31, 12577–12584.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  1. 1.Department of Biochemistry, School of Medicine and Biomedical SciencesState University of New YorkBuffalo

Personalised recommendations