Cell Biochemistry and Biophysics

, Volume 38, Issue 1, pp 55–78 | Cite as

Development of platelet contractile force as a research and clinical measure of platelet function

Review Article


This article reviews work performed at the Medical College of Virginia of Virginia Commonwealth University during the development of a whole-blood assay of platelet function. The new assay is capable of assessing platelet function during clotting and thus allows measurement of the contribution of platelets to thrombin generation. Because platelets are monitored in the presence of thrombin, the test gages platelets under conditions of maximal activation. Three parameters are simultaneously assessed on one 700-μL sample of citrated whole blood. Platelet contractile force (PCF), the force produced by platelets during clot retraction, is directly measured as a function of time. This parameter is sensitive to platelet number, platelet metabolic status, glycoprotein IIb/IIIa status, and the presence of antithrombin activities. Clot elastic modulus (CEM), also measured as a function of time, is sensitive to fibrinogen concentration, platelet concentration, the rate of thrombin generation, the flexibility of red cells, and the production of force by platelets. The third parameter, the thrombin generation time (TGT) is determined from the PCF kinetics curve. Because PCF is absolutely thrombin dependent (no thrombin—no force), the initial upswing in PCF occurs at the moment of thrombin production. TGT is sensitive to clotting factor deficiencies, clotting factor inhibitors, and the presence of antithrombins, all of which prolong the TGT and are known to be hemophilic states. Treatment of hemophilic states with hemostatic agents shortens, the TGT toward normal. TGT has been demonstrated to be shorter and PCF to be increased in coronary artery disease, diabetes mellitus, and several other thrombophilic states. Treatment of thrombophilic states with a variety of heparin and nonheparin anticoagulants prolongs the TGT toward normal. The combination of PCF, CEM, and TGT measured on the same sample may allow rapid assessment of global hemostasis and the response to a variety of procoagulant and anticoagulant medications.

Index Entries

Clot retraction platelet contractile force elastic modulus thrombin generation thrombophilia hemophilia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Quick, A. J., Stanley-Brown, M., and Bancroft, F. W. (1935) A study of the coagulation defect in hemophilia and in jaundice. Am. J. Med. Sci. 190, 501–511.Google Scholar
  2. 2.
    Proctor, R. R., and Rappaport, S. I. (1961) The partial thromboplastin time with kaolin. A simple screening test for first stage plasma clotting factor deficiencies. Am. J. Clin. Pathol. 36, 212–219.PubMedGoogle Scholar
  3. 3.
    Matchett, M. O. and Ingram, G. I. C. (1965) Partial thromboplastin time test with kaolin. Normal range and modifications for the diagnosis of haemophilia and Christmas disease. J. Clin. Pathol. 18, 465.PubMedCrossRefGoogle Scholar
  4. 4.
    Gaydos, L. A., Freireich, E. J., and Mantel, N. (1962) The quantitative relation between platelet count and hemorrhage in individuals with acute leukemia. N. Engl. J. Med. 266, 905–909.PubMedCrossRefGoogle Scholar
  5. 5.
    Ivy, A. C., Shapiro, P. F., and Melnick, P. (1935) The bleeding tendency in jaundice. Surg. Gynecol. Obstet. 60, 781–784.Google Scholar
  6. 6.
    Ivy, A. C., Nelson, D., and Bucher, G. (1941) The standardization of certain factors in the cutaneous “venostasis” bleeding time technique. J. Lab. Clin. Med. 26, 1812–1822.Google Scholar
  7. 7.
    Mielke, C. H., Jr, Kaneshiro, M. M., Maher, I. A. et al. (1969) The standardized normal Ivy bleeding time and its prolongation by aspirin. Blood 34, 204–215.PubMedGoogle Scholar
  8. 8.
    Rogers, R. P. C., Levin, J. (1990) A critical reappraisal of the bleeding time. Semin. Thromb. Hemost. 16, 1–20.CrossRefGoogle Scholar
  9. 9.
    Lind, S. E. (1991) The bleeding time does not predict surgical bleeding. Blood 77, 2547–2552.PubMedGoogle Scholar
  10. 10.
    Koster, T., Caekebeke-Peerlinck, K. M., and Briet, E. (1989) A randomized, and blinded comparison of the sensitivity and the reporducibility of the Ivy and Simplate II bleeding time techniques. Am. J. Clin. Pathol. 92, 315–320.PubMedGoogle Scholar
  11. 11.
    Schwartz, L., Brister, S. J., Bourassa, M. G., Peniston, C., and Buchanan, M. R. (1998) Interobserver reproducibility and biological variability of the surgicutt II bleeding time. J. Thromb. Thrombolysis 6, 155–158.CrossRefPubMedGoogle Scholar
  12. 12.
    O'Brien, J. R. (1962) Platelet aggregation. II. Some results from a new method of study. J. Clin. Pathol. 15, 452–455.CrossRefGoogle Scholar
  13. 13.
    Born, G. V. and Cross, M. J. (1963) The aggregation of blood platelets. J. Physiol. 168, 178–195.PubMedGoogle Scholar
  14. 14.
    Simon, D. I., Liu, C. B., Ganz, P., et al. (2001) A comparative study of light transmission aggregometry and automated bedside platelet function assays in patients undergoing percutaneous coronary intervention and receiving abciximab, eptifibatide, or tirofiban. Cathet. Cardiovasc. Intervent. 52, 425–432.CrossRefGoogle Scholar
  15. 15.
    Storey, R. F., May, J. A., Wilcox, R. G., and Heptinstall, S. (1999) A whole blood assay of inhibition of platelet aggregation by glycoprotein IIb/IIIa antagonists: comparison with other aggregation methodologies. Thromb. Haemost. 82, 1307–1311.PubMedGoogle Scholar
  16. 16.
    Smith, J. W., Steinhubl, S. R., Lincoff, A. M., et al. (1999) Rapid platelet-function assay: an automated and quantitative cartridge-based method. Circulation 99, 620–625.PubMedGoogle Scholar
  17. 17.
    Madan, M., Berkowitz, S. D., Christie, D. J., Smith, A. C., Sigmon, K. N., and Tcheng, J. E. (2002) Determination of platelet aggregation inhibition during percutaneous coronary intervention with the platelet function analyzer PFA-100. Am. Heart J. 144, 151–158.PubMedCrossRefGoogle Scholar
  18. 18.
    Salat, A., Kroess, S., Felfernig-Boehm, D., et al. (2002) Comparison of in vitro closure time (PFA-100) with whole blood electrical aggregometry and platelet surface antigen expression in healthy volunteers. Thromb. Res. 105, 205–208.PubMedCrossRefGoogle Scholar
  19. 19.
    Glanzmann, E. (1918) Hereditäre hämorrhagische thrombasthenie. Ein Beitrag zur Pathologie der Blutplättchen. Jahr. Kinderheilk. 88, 1–42.Google Scholar
  20. 20.
    Budtz-Olsen, O. E. (1951) Clot Retraction. Blackwell, Oxford.Google Scholar
  21. 21.
    Carr, M. E. and Zekert, S. L. (1991) Measurement of platelet mediated-force development during plasma clot formation. Am. J. Med. Sci. 302, 13–18.PubMedCrossRefGoogle Scholar
  22. 22.
    Cohen, I. and De Vries, A. (1973) Platelet contractile regulation in an isometric system. Nature 246, 36–37.PubMedCrossRefGoogle Scholar
  23. 23.
    Carr, M. E., and Zekert, S. L. (1989) Platelet mediated clot retraction is temperature dependent—studies with a new retractometer. Blood 74(Suppl. 1), 399a.Google Scholar
  24. 24.
    Carr, M. E., Zekert, S. L. (1991) Force monitoring of clot retraction during DDAVP therapy for the qualitative platelet disorder of uraemia: Report of a case. Blood Coagul. Fibrinol. 2, 303–308.Google Scholar
  25. 25.
    Carr, M. E., Zekert, S. L., Marston, A. W., Magruder, C., and Kirschbaum, B. (1994) Comparison of platelet force development, a new measure of platelet function, and bleeding time in chronic hemodialysis patients. Am. J. Clin. Pathol. 101, 392 (abstract).Google Scholar
  26. 26.
    Carr, M. E., Shen, L. L., and Hermans, J. (1976) A physical standard of fibrinogen: measurement of the elastic modulus of dilute fibrin gels with a new elastometer. Anal. Biochem. 72, 202–211.PubMedCrossRefGoogle Scholar
  27. 27.
    Carr, M. E. and Carr, S. L. (1995) Fibrin structure and concentration alter clot elastic modulus but do not alter platelet mediated force development. Blood Coag. Fibrinol. 6, 79–86.Google Scholar
  28. 28.
    Carr, M. E., Zekert, S. L., and Jolly, M. K. (1992) Whole blood clot elastic modulus as a measure of altered erthrocyte flexibility in sickle cell disease. Blood 80(Suppl. 1), 11a.Google Scholar
  29. 29.
    Carr, M. E., Carr, S. L., and McCardell, K. A. (1996) Use of TPA-induced clot lysis time (LCLOT) to diagnosis abnormal clot structure and fibrinolysis in a patient with spontaneous bleeding into his leg. Angiology 47, 941–949.PubMedGoogle Scholar
  30. 30.
    Carr, M. E., Carr, S. L., Massey, G., and Trent, D. (1994) Successful application of the tPA-induced clot lysis time (tCLT) in three patients with previously undiagnosed bleeding diathesis. Blood 84(Suppl. 1), 674a.Google Scholar
  31. 31.
    Carr, M. E. (1995) Measurement of platelet force: the Hemodyne® Hemostatic Analyzer. Clin. Lab. Manag. Rev. 9, 312–320.Google Scholar
  32. 32.
    Harker, L. A. (1986) Bleeding after cardiopulmonary bypass. N. Engl. J. Med. 314, 1446–1448.PubMedCrossRefGoogle Scholar
  33. 33.
    Woodman, R. C. and Harker, L. A. (1990) Bleeding complications associated with cardiopulmonary bypass. Blood 76, 1680–1697.PubMedGoogle Scholar
  34. 34.
    Harker, L., Malpass, T. W., Branson, H. E., et al. (1980) Mechanism of abnormal bleeding in patients undergoing cardiopulmonary bypass: acquired transient platelet dysfunction associated with selective alpha-granule release. Blood 56, 824–834.PubMedGoogle Scholar
  35. 35.
    Greilich, P. E., Carr, M. E., Carr, S. L., and Chang, A. S. (1995) Reductions in platelet force development by cardiopulmonary bypass are associated with hemorrhage. Anesth. Analg. 80, 459–465.PubMedCrossRefGoogle Scholar
  36. 36.
    George, J. N., Pickett, E. B., Saucerman, S., et al. (1986) Platelet surface glycoproteins. Studies on resting and activated platelet and platelet membrane microparticles in normal subjects, and observations in patients during adult respiratory distress syndrome and cardiac surgery. J. Clin. Invest. 78, 340–348.PubMedGoogle Scholar
  37. 37.
    Wenger, R. K., Lukasiewicz, H., Mikuta, B. S., et al. (1989) Loss of platelet fibrinogen receptors during clinical cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 97, 235–239.PubMedGoogle Scholar
  38. 38.
    Rinder, C. S., Mathew, J. P., Rinder, H. M., et al. (1991) Modulation of platelet surface adhesion receptors during cardiopulmonary bypass. Anesthesiology 75, 563–570.PubMedCrossRefGoogle Scholar
  39. 39.
    Carr, M. E. and Carr, S. L. (1994) At high heparin concentrations, protamine concentrations which reverse heparin anticoagulant effects are insufficient to reverse heparin anti-platelet effects. Thromb. Res. 75, 617–630.PubMedCrossRefGoogle Scholar
  40. 40.
    Carr, M. E. and Martin, E. J. (1999) Reproducibility, daily variation, and the effect of sample age on platelet contractile force and clot elastic modulus in normal volunteers. Thromb. Haemost. 74(Suppl.), 396.Google Scholar
  41. 41.
    Alving, B. M., Reid, T. J., Fratantoni, J. C., and Finlayson, J. S. (1997) Frozen platelets and platelet substitutes in transfusion medicine. Transfusion 37, 866–876.PubMedCrossRefGoogle Scholar
  42. 42.
    Reid, T., Snider, R., Hartman, K., Greilich, P. E., Carr, M. E., and Alving, B. M. (1998) A method for the quantitative assessment of platelet-induced clot retraction and clot strength in fresh and stored platelets. Vox Sanguinis 75, 270–277.PubMedCrossRefGoogle Scholar
  43. 43.
    de Gaetano, G., Franco, R., Donati, M. B., Bonaccorsi, A., and Garattini, S. (1974) Mechanical recording of reptilase-clot retraction: effect of adenosine-5′-diphosphate and prostaglandin E1. Thromb. Res. 4, 189–192.PubMedCrossRefGoogle Scholar
  44. 44.
    Carr, M. E., Carr, S. L., and Greilich, P. E. (1996) Heparin ablates force development during platelet mediated clot retraction. Thromb. Haemost. 75, 674–678.PubMedGoogle Scholar
  45. 45.
    Carr, M. E., Jr., Angchaisuksiri, P., Carr, S. L., and Barnes, J. (1995) Effect of antithrombin III concentrate, alone or with heparin, on clot structure and platelet function. Blood 86 (Suppl. 1), 866a.Google Scholar
  46. 46.
    Carr, M. E., Park, A., Zekert, S. L., Marques, D., Goldman, I. D., and Sobel, M. (1993) Anticoagulant and antiplatelet activities of heparin and low molecular weight derivatives. Blood 82 (Suppl. 1) 603a.Google Scholar
  47. 47.
    Carr, M. E., Monge-Meberg, P., McCardell, K., and Carr, S. L. (1996) Dermatan sulfate suppresses platelet force as it prolongs the APTT. Blood 88 (Suppl. 1), 79b.Google Scholar
  48. 48.
    Carr, M. E. and Zekert, S. (1993) Effect of non-heparin thrombin antagonists on platelet force development during clot retraction. Thromb. Haemost. 69, 1241.Google Scholar
  49. 49.
    Carr, M. E., Carr, S. L., Tildon, T., Fisher, L. M., and Martin, E. J. (2003) Batroxobin-induced clots exhibit delayed and reduced platelet contractile force in some patients with clotting factor deficiencies. J. Thromb. Haemost. 1, 243–249.PubMedCrossRefGoogle Scholar
  50. 50.
    Erickson, B. and Macik, B. G. (1999) Platelet contractile force in chronic hemodialysis patients with arterial-venous fistula. Blood 94 (Suppl. 1), (abstract) 79b.Google Scholar
  51. 51.
    Greilich, P. E., Carr, M. E., Zekert, S. L., and Dent, R. M. (1994) Quantitative assessment of platelet function and clot structure in patients with severe coronary artery disease. Am. J. Med. Sci. 307, 15–20.PubMedCrossRefGoogle Scholar
  52. 52.
    Krishnaswami, A., Carr, M. E., Jessie, R. L., et al. (2002) Patients with coronary artery disease who present with chest pain have significantly elevated platelet contractile force and clot elastic modulus. Thromb. Haemost. 88, 739–744.PubMedGoogle Scholar
  53. 53.
    Carr, M. E., Krishnaswami, A., and Martin, E. J. (2002) Platelet contractile force (PCF) and clot elastic modulus (CEM) are elevated in diabetic patients with chest pain. Diabet. Med. 19, 862–866.PubMedCrossRefGoogle Scholar
  54. 54.
    Carr, M. E., Hackney, M. H., Hines, S. J., Heddinger, S. P., Carr, S. L., and Martin, E. J. (2002) Enhanced platelet force development despite drug induced inhibition of platelet aggregation in patients with thromboangiitis obliterans. Vasc. Endovasc. Surg. 36, 473–480.Google Scholar
  55. 55.
    Carr, M. E. and Zekert, S. L. (1994) Abnormal clot retraction, altered fibrin structure, and normal platelet function in multiple myeloma. Am. J. Physiol. 266, H1195-H1201.PubMedGoogle Scholar
  56. 56.
    Carr, M. E. (2001) Diabetes mellitus, a hypercoagulable state. J. Diabetes Complic. 15, 44–54.CrossRefGoogle Scholar
  57. 57.
    Collier, A., Rumley, A., Rumley, A. G., et al. (1992) Free radical activity and hemostatic factors in NIDDM patients with and without microalbuminuria. Diabetes 41, 909–913.PubMedCrossRefGoogle Scholar
  58. 58.
    Carmassi, F., Morale, M., Puccetti, R., et al. (1992) Coagulation and fibrinolytic system impairment in insulin dependent diabetes mellitus. Thromb. Res. 67, 643–654.PubMedCrossRefGoogle Scholar
  59. 59.
    Borsey, D. Q., Prowse, C. V., Gray, R. S., et al. (1984) Platelet and coagulation factors in proliferative diabetic retinopathy. J. Clin. Pathol. 37, 659–664.PubMedCrossRefGoogle Scholar
  60. 60.
    Carr, M., Jones, C., Adler, R., Dent, R., and Carr, S. (2001) Hyperglycemia alters fibrinogen leading to abnormal fibrin structures and delayed fibrinolysis in diabetes. Thromb. Haemost. (Suppl.) (abstract) 86, P1255.Google Scholar
  61. 61.
    Carr, M. E., Dent, R. M., and Carr, S. L. (1996) Abnormal fibrin structure and inhibition of fibrinolysis in patients with multiple myeloma. J. Lab. Clin. Med. 128, 83–88.PubMedCrossRefGoogle Scholar
  62. 62.
    Carr Jr., M. E., Angchaisuksiri, P., and Carr, S. L. (1995) Effect of ε-aminocap roic acid (EACA) on clot structure and platelet function during tPA mediated clot dissolution. Blood 86(Suppl. 1), 895a.Google Scholar
  63. 63.
    Reverter, J. C., Beguin, S., Kessels, H., Kumar, R., Hemmer, H. C., and Coller, B. S. (1996) Inhibition of platelet-mediated, tissue-factor-induced thrombin generation by the mouse/human chimeric 7E3 antibody; potential implications for the effect of 7E3 Fab treatment on acute thrombosis and “clinical restenosis”. J. Clin. Invest. 98, 863–874.PubMedCrossRefGoogle Scholar
  64. 64.
    EPIC Investigators. (1994) Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. N. Engl. J. Med. 330, 956–961.CrossRefGoogle Scholar
  65. 65.
    EPILOG Investigators. (1997) Platelet glycoprotein IIb/IIIa receptor blockade and low dose heparin during percutaneous coronary revascularization. N. Engl. J. Med. 336, 1689–1696.CrossRefGoogle Scholar
  66. 66.
    Carr, M. E., Carr, S. L., Hantgan, R. R., and Braaten, J. (1995) Glycoprotein IIb/IIIa blockade inhibits platelet mediated force development and reduces gel elastic modulus. Thromb. Haemost. 73, 499–505.PubMedGoogle Scholar
  67. 67.
    Greilich, P. E., Alving, B. M., O'Neill, K. L., Chang, A. S., and Reid, T. J. (1997) A modified thromboelastographic method for monitoring c7E3 Fab in heparinized patients. Anesthet. Analg. 84, 31–38.CrossRefGoogle Scholar
  68. 68.
    Greilich, P. E., Alving, B. M., Longnecker, D., et al. (1999) Near-site monitoring of the antiplatelet drug ABCIXIMAB using the Hemodyne® analyzer and modified Thromboelastograph®. J. Cardiothorac. Vasc. Anesth. 13, 58–64.PubMedCrossRefGoogle Scholar
  69. 69.
    The Platelet Receptor Inhibition in Ischemic Syndrome Management (PRISM) Study Investigators. (1998) A comparison of aspirin plus tirofiban with aspirin plus heparin for unstable angina. N. Engl. J. Med. 338, 1498–1505.CrossRefGoogle Scholar
  70. 70.
    The Platelet Receptor Inhibition in Ischemic Syndrome Management in Patients Limited by Unstable Signs, and Symptoms (PRISM-PLUS) Study Investigators. (1998) Inhibition of the platelet glycoprotein IIb/IIIa receptor with tirofiban in unstable angina and non-Q-wave infarction. N. Engl. J. Med. 338, 1488–1497.Google Scholar
  71. 71.
    The PURSUIT Trial Investigators. (1998) Inhibition of platelet glycoprotein IIb/IIIa with eptifibatide in patients with acute coronary syndromes. Platelet glycoprotein IIb/IIIa in unstable angina: receptor suppression using integrilin therapy. N. Engl. J. Med. 339, 436–443.CrossRefGoogle Scholar
  72. 72.
    The IMPACT II Investigators. (1997) Randomized placebo-controlled trial of effect of eptifibatide on complications of percutaneous coronary intervention: IMPACT-II. Integrilin to minimize platelet aggregation and coronary thrombosis-II. Lancet 349, 1422–1428.CrossRefGoogle Scholar
  73. 73.
    McCardell, K. A., Carr, S. L., and Carr, M. E. (1996) Aprotinin augments protamine sulfate reversal of heparin antiplatelet effects. J. Invest. Med. 44, 212A.Google Scholar
  74. 74.
    Carr Jr., M. E., Carr, S., and Roa, V. (1996) Aprotinin prevents heparin blockade of platelet force development. Experimental Biology '96—The American Physiology Society.Google Scholar
  75. 75.
    McCardell, K. A., Carr, S. L., and Carr, M. E. (1996) Aprotinin can reverse heparin mediated suppression of platelet force development. J. Invest. Med. 44, 287A.Google Scholar
  76. 76.
    Carr, M. E., Carr, S. L., McCardell, K., and Dessypris, E. N. (1997) Differential effects of thrombopoietin and stem cell factor on platelet contractile force. Blood 90 (Suppl. 1) 67b.Google Scholar
  77. 77.
    Carr, M. E. (1997) In vitro assessment of platelet function. Transfusion Med. Rev. 11, 106–115.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  1. 1.Coagulation Special Studies Laboratory, Division of Hematology/Oncology, Central Virginia Center for Coagulation Disorders, Departments of Medicine and Pathology, Medical College of VirginiaVirginia Commonwealth UniversityRichmond
  2. 2.Richmond Veterans Administration Medical CenterRichmond

Personalised recommendations