Cell Biochemistry and Biophysics

, Volume 38, Issue 1, pp 41–54 | Cite as

Flightin is a myosin rod binding protein

Original Article


The assembly of striated muscle myosin into thick filaments of precise and regular length requires the assistance of accessory proteins. Drosophila indirect flight muscle (IFM) contain flightin, a 20-kDa protein that has been shown to be essential for flight, for maintenance of sarcomeric integrity in active muscle, and informative in length determination of thick filaments during IFM development. Additionally, a point mutation in the myosin rod (Mhc 13) negates flightin accumulation in the IFM in vivo. The manner in which flightin interacts with thick filaments is not known. Here, two different solid-state binding assays demonstrate that flightin binds to myosin and to a recombinant fragment of the myosin rod that include the COOH-terminal 600 amino acids (zone 19 to tail piece). The interaction of flightin and myosin is abolished by the single amino acid substitution in Mhc 13 at position 1e of zone 27 of the red (residue 1554). The molar ratio of flightin to myosin is approx 1∶1 to 1∶2. Thus, the instability of thick filaments, seen in vivo in the absence of flightin suggests that the flightin-myosin interaction is critical for maintaining sarcomere integrity in active muscle.

Index Entries

Drosophila insect flight muscle coiled-coil proteins thick filaments flightin myosin rod 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis, J. S. (1988) Interaction of C-protein with pH 8.0 synthetic thick filaments prepared from the myosin of vertebrate skeletal muscle J. Muscle Res. Cell Motil. 9, 174–183.PubMedCrossRefGoogle Scholar
  2. 2.
    Winegrad, S. (1999)Cardiac myosin binding protein C. Circ. Res. 84, 1117–1126.PubMedGoogle Scholar
  3. 3.
    Barral, J. M., Hutagalung, A. H., Brinker, A., Hartl, F. U., and Epstein, H. F. (2002) Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science 295, 669–671.PubMedCrossRefGoogle Scholar
  4. 4.
    Mackenzie, J. M., Jr. and Epstein, H. F. (1980) Paramyosin is necessary for determination of nematode thick filament length in vivo. Cell 22, 747–755.PubMedCrossRefGoogle Scholar
  5. 5.
    Reedy, M. C., Bullard, B., and Vigoreaux, J. O. (2000) Flightin is essential for thick filament assembly and sarcomere stability in Drosophila flight muscles. J. Cell Biol. 151, 1483–1499.PubMedCrossRefGoogle Scholar
  6. 6.
    Vigoreaux, J. O., Saide, J. D., Valgeirsdottir, K. and Pardue, M. L. (1993) Flightin, a novel myofibrillar protein of Drosophila stretch-activated muscles. J. Cell Biol. 121, 587–598.PubMedCrossRefGoogle Scholar
  7. 7.
    Vigoreaux, J. O. (1994) Alterations in flightin phosphorylation in Drosophila flight muscles are associated with myofibrillar defects engendered by actin and myosin heavy chain mutant alleles. Biochem. Genet. 32, 301–314.PubMedCrossRefGoogle Scholar
  8. 8.
    Kronert, W. A., O'Donnell, P. T., Fieck, A., et al. (1995) Defects in the Drosophila myosin rod permit sarcomere assembly but cause flight muscle degeneration. J. Mol. Biol. 249, 111–125.PubMedCrossRefGoogle Scholar
  9. 9.
    Cripps, R. M., Suggs, J. A., and Bernstein, S. I. (1999) Assembly of thick filaments and myofibrils occurs in the absence of the myosin head. EMBO J. 18, 1793–1804.PubMedCrossRefGoogle Scholar
  10. 10.
    Chowrashi, P. K., Pemrick, S. M., Li, S., et al. (1996) The myosin filament XV assembly: contributions of 195 residue segments of the myosin rod and the eight C-terminal residues. J Muscle Res. Cell Motil. 17, 555–573.PubMedCrossRefGoogle Scholar
  11. 11.
    Parker, V. P. S., Falkenthal, S., and Davidson, N. (1985), Characterization of the myosin light chain-2 gene of Drosophila melanogaster. Mol. Cell. Biol. 5, 3058–3068.PubMedGoogle Scholar
  12. 12.
    Crimmins, D. L., McCourt, D. W., Thoma, R. S., Scott, M. G., Macke, K., and Schwartz, B. D. (1990) In situ chemical cleavage of proteins immobilized to glass-fiber and polyvinylidened-ifluoride membranes: cleavage at tryptophan residues with 2-(2′-nitrophenylsulfenyl)-3-methyl-3′-bromoindolenine to obtain internal amino acid sequence. Anal. Biochem. 187, 27–38.PubMedCrossRefGoogle Scholar
  13. 13.
    Swank, D. M., Bartoo, M. L., Knowles, A. F., et al. (2001) Alternative exon-encoded regions of Drosophila myosin heavy chain modulate ATPase rates and actin sliding velocity. J. Biol. Chem. 276, 15,117–15,124.CrossRefGoogle Scholar
  14. 14.
    Saide, J. D., Chin-Bow, S., Hogan-Sheldon, J., et al. (1989) Characterization of components of Z-bands in the fibrillar flight muscle of Drosophila melanogaster. J. Cell. Biol. 109, 2157–2167.PubMedCrossRefGoogle Scholar
  15. 15.
    Alyonycheva, T. N., Mikawa, T., Reinach, F. C., and Fischman, D. A. (1997) Isoform-specific interaction of the myosin-binding proteins (MyBPs) with skeletal and cardiac myosin is a property of the C-terminal immunoglobulin domain. J. Biol. Chem. 272, 20,866–20,872.CrossRefGoogle Scholar
  16. 16.
    McLachlan, A. D. and Karn, J. (1982) Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature 299, 226–231.PubMedCrossRefGoogle Scholar
  17. 17.
    Moos, C., Offer, G., Starr, R., and Bennett, P. (1975) Interaction of C-protein with myosin, myosin rod and light meromyosin. J. Mol. Biol. 97, 1–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Okagaki, T., Weber, F. E., Fischman, D. A., Vaughan, K. T., Mikawa, T., and Reinach, F. C. (1993) The major myosin-binding domain of skeletal muscle MyBP-C (C protein) resides in the COOH-terminal, immunoglobulin C2 motif. J. Cell Biol. 123, 619–626.PubMedCrossRefGoogle Scholar
  19. 19.
    Miyamoto, C. A., Fishman, D. A., and Reinach, F. C. (1999) The interface between MyBP-C and myosin: site-directed mutagenesis of the CX myosin-binding domain of MyBP-C. J. Muscle Res. Cell Motil. 20, 703–715.PubMedCrossRefGoogle Scholar
  20. 20.
    Gruen, M. and Gautel, M. (1999) Mutations in beta-myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin-binding protein-C. J. Mol. Biol. 286, 933–949.PubMedCrossRefGoogle Scholar
  21. 21.
    Obermann, W. M., van der Ven, P. F., Steiner, F., Weber, K., and Furst, D. O. (1998) Mapping of a myosin-binding domain and a regulatory phosphorylation site in M-protein a structural protein of the sarcomeric M band. Mol. Biol. Cell 9, 829–840.PubMedGoogle Scholar
  22. 22.
    Obermann, W. M., Gautel, M., Weber, K., and Furst, D. O. (1997) Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J 16, 211–220.PubMedCrossRefGoogle Scholar
  23. 23.
    Hoppe, P. E. and Waterston, R. H. (2000) A region of the myosin rod important for interaction with paramyosin in Caenorhabditis elegans striated muscle. Genetics 156, 631–643.PubMedGoogle Scholar
  24. 24.
    Houmeida, A., Holt, J., Tskhovrebova, L., and Trinick, J. (1995) Studies of the interaction between titin and myosin. J. Cell Biol., 131, 1471–1481.PubMedCrossRefGoogle Scholar
  25. 25.
    Blair, E., Redwood, C., de Jesus Oliveira, M., et al. (2002) Mutations of the light meromyosin domain of the beta-myosin heavy chain rod in hypertrophic cardiomyopathy. Circ. Res. 90, 263–269.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  1. 1.Department of Biology and Cell and Molecular Biology ProgramUniversity of VermontBurlington

Personalised recommendations