Cell Biochemistry and Biophysics

, Volume 36, Issue 2–3, pp 221–233 | Cite as

Use of adenoviruses to study isoform specificity of G-protein-receptor-coupled Ca2+ signaling in intact epithelial cells

  • Philip Poronnik
  • Michelle M. Cummins
  • Lauren M. O'Mullane
  • David I. Cook
Review Article


It is firmly established that the activation of many heptahelical receptors by extracellular agonists leads to the activation of effectors such as phospholipase Cβ (PLCβ), the subsequent production of inositol-1,4,5-trisphosphate (IP3), and a resultant increase in intracellular free Ca2+. Heterotrimeric G-proteins have a critical role in transducing the signal from the hepthalelical receptor to PLCβ and in determining the specificity and duration of the cellular responses. There remain, however, a number of areas of uncertainty regarding the exact mechanisms involved in regulating G-protein-mediated receptor-effector coupling in different cell types. For example, the molecular identity of the G-protein involved and the degree of isoform specificity among G-proteins of the same family and their receptors remains unclear. It is also not known in many cell types whether it is the α-or the βλ-subunits of these G-proteins that activate PLCβ. In order to address these issues, we have used replication-deficient adenoviruses as a tool to deliver, into intact epithelial cells, transgenes coding for proteins involved in G-protein-couplied receptor signaling pathways.

Index Entries

G-Protein epithelial adenovirus muscarinic purinergic-phospholipase C 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hamm, H. E. (1998) The many faces of G protein signaling. J. Biol. Chem. 273, 669–672.PubMedCrossRefGoogle Scholar
  2. 2.
    Morris, A. J. and Malbon, C. C. (1999) Physiological regulation of G protein-linked signaling. Physiol. Rev. 79, 1373–1430.PubMedGoogle Scholar
  3. 3.
    Choukroun, G., Hajjar, R., Fry, S., del Monte, F., Haq, S., Guerrero, J. L., et al. (1999) Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH2-terminal kinases. J. Clin. Invest. 104, 391–398.PubMedCrossRefGoogle Scholar
  4. 4.
    Adams, J. W., Sakata, Y., Davis, M. G., Sah, V. P., Wang, Y., Liggett, S. B., et al. (1998) Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc. Natl. Acad. Sci. USA 95, 10,140–10,145.CrossRefGoogle Scholar
  5. 5.
    Akhter, S. A., Skaer, C. A., Kypson, A. P., McDonald, P. H., Peppel, K. C., Glower, D. D., et al. (1997) Restoration of b-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. Proc. Natl. Acad. Sci. USA 94, 12,100–12,105.CrossRefGoogle Scholar
  6. 6.
    Müller-Ladner, U., Gay, R. E., and Gay, S. (1999) Signaling and effector pathways. Curr. Opin. Rheumatol. 11, 194–201.PubMedCrossRefGoogle Scholar
  7. 7.
    Edwards, S. W., Tan, C. M., and Limbird, L. E. (2000) Localization of G-protein-coupled receptors in health and disease. Trends Pharmacol. Sci. 21, 304–308.PubMedCrossRefGoogle Scholar
  8. 8.
    Brown, E. M., Pollak, M., and Hebert, S. C. (1998) The extracellular calcium-sensing receptor: its role in health and disease. Annu. Rev. Med. 49, 15–29.PubMedCrossRefGoogle Scholar
  9. 9.
    Gurrath, M. (2001) Peptide-binding G protein-coupled receptors: new opportunities for drug design. Curr. Med. Chem. 8, 1257–1299.Google Scholar
  10. 10.
    Barritt, G. J. (1999) Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem. J. 337, 153–169.PubMedCrossRefGoogle Scholar
  11. 11.
    Parekh, A. B. and Penner, R. (1997) Store depletion and calcium influx. Physiol. Rev. 77, 901–930.PubMedGoogle Scholar
  12. 12.
    Petersen, O. H., Burdakov, D., and Tepikin, A. V. (1999) Polarity in intracellular calcium signaling. Bioessays 21, 851–860.PubMedCrossRefGoogle Scholar
  13. 13.
    Gautam, N., Downes, G. B., Yan, K., and Kisselev, O. (1998) The G-protein βλ complex. Cell Signal. 10, 447–455.PubMedCrossRefGoogle Scholar
  14. 14.
    Cummins, M. M., Poronnik, P., O'Mullane, L. M., and Cook, D. I. (2000) Studying heterotrimeric G-protein-linked signal transduction using replication-deficient adenoviruses. Immunol. Cell. Biol. 78, 375–386.PubMedCrossRefGoogle Scholar
  15. 15.
    Barritt, G. J. and Gregory, R. B. (1997) An evaluation of strategies available for the identification of GTP-binding proteins required in intracellular signalling pathways. Cell Signal. 9, 207–218.PubMedCrossRefGoogle Scholar
  16. 16.
    Macrez-Lepretre, N., Kalkbrenner, F., Schultz, G., and Mironneau, J. (1997) Distinct functions of Gq and G11 proteins in coupling α1-adrenoreceptors to Ca2+-release and Ca2+ entry in rat portal vein myocytes. J Biol. Chem. 272, 5261–5268.PubMedCrossRefGoogle Scholar
  17. 17.
    Dippel, E., Kalkbrenner, F., Wittig, B., and Schultz, G. (1996) A heterotrimeric G protein complex couples the muscarinic ml receptor to phospholipase Cβ. Proc. Natl. Acad. Sci. USA 93, 1391–1396.PubMedCrossRefGoogle Scholar
  18. 18.
    Xu, X., Kitamura, K., Lau, K. S., Muallem, S., and Miller, R. T. (1995) Differential regulation of Ca2+ release-activated Ca2+ influx by heterotrimeric G proteins. J. Biol. Chem. 270, 29,169–29,175.Google Scholar
  19. 19.
    Komwatana, P., Dinudom, A., Young, J. A., and Cook, D. I. (1996) Cytosolic Na+ controls and epithelial Na+ channel via the Go guanine nucleotide-binding regulatory protein. Proc. Natl. Acad. Sci. USA 93, 8107–8111.PubMedCrossRefGoogle Scholar
  20. 20.
    Hubner, M., Schreiber, R., Boucherot, A., Sanchez-Perez, A., Poronnik, P., Cook, D. I., et al. (1999) Feedback inhibition of epithelial Na+ channels in Xenopus oocytes does not require Go or Gi2 proteins. FEBS Lett. 459, 443–447.PubMedCrossRefGoogle Scholar
  21. 21.
    Dinudom, A., Komwatana, P., Young, J. A., and Cook, D. I. (1995) A forskolin-activated Cl current in mouse mandibular duct cells. Am. J. Physiol. 268, G806-G812.PubMedGoogle Scholar
  22. 22.
    Hermouet, S., Murakami, T., and Speigel, A. M. (1993) Stable changes in expression or activation of G protein β1 or β2 subunits affect the expression of both β1 and β2 subunits. FEBS Lett. 327, 183–188.PubMedCrossRefGoogle Scholar
  23. 23.
    Poronnik, P., O'Mullane, L. M., Harding, E. A., Greger, R., and Cook, D. I. (1998) Use of replication deficient adenoviruses to investigate the role of G proteins in Ca2+ signaling in epithelial cells. Cell Calcium 24, 97–103.PubMedCrossRefGoogle Scholar
  24. 24.
    He, T.-C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B. (1998) A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514.PubMedCrossRefGoogle Scholar
  25. 25.
    Cummins, M. M., O'Mullane, L. M., Barden, J. A., Cook, D. I., and Poronnik, P. (2000) Purinergic responses in HT29 colonic epithelial cells are mediated by G protein α-subunits. Cell Calcium 27, 247–255.PubMedCrossRefGoogle Scholar
  26. 26.
    Hermouet, S., Merendino, J. J., Gutkind, J. S., Gutkind, J. S., and Spiegel, A. M. (1991) Activating and inactivating mutations of the α-subunit of Gi2 protein have opposite effects on proliferation of NIH 3T3 cells. Proc. Natl. Acad. Sci. USA 88, 10,455–10,459.CrossRefGoogle Scholar
  27. 27.
    Kalinec, G., Nazarali, A. J., Hermouet, S., Xu, N., and Gutkind, J. S. (1992) Mutated α subunit of the Gq protein induces malignant transformation in NIH 3T3 cells. Mol. Cell. Biol. 12, 4687–4693.PubMedGoogle Scholar
  28. 28.
    Lin, H. C., Duncan, J. A., Kozasa, T., and Gilman, A. G. (1998) Sequestration of the G protein βγ subunit complex inhibits receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 95, 5057–5060.PubMedCrossRefGoogle Scholar
  29. 29.
    Poronnik, P., O'Mullane, L., Conigrave, A. D., and Cook, D. I. (1999) Replication deficient adenoviruses reveal that muscarinic responses in the epithelia cell lines, HSG and HT29, are mediated by the G protein βγ subunits. Pflügers Archiv. 438, 79–85.PubMedCrossRefGoogle Scholar
  30. 30.
    Degtiar, V. E., Wittig, B., Schultz, G., and Kalkbrenner, F. (1998) Microinjection of antisense oligonucleotides and electrophysiological recording of whole-cell currents as tools to identify specific G-protein subtypes coupling hormone receptors to voltage-gated calcium channels. Methods Mol. Biol. 84, 123–136.PubMedGoogle Scholar
  31. 31.
    Graham, F. and Prevec, L. (1991) Manipulation of adenovirus vectors, in Gene Transfer and Expression Protocols (Murray, E., ed.), Humana, Clifton, NJ, vol. 7, pp. 109–128.CrossRefGoogle Scholar
  32. 32.
    Dinudom, A., Poronnik, P., Allen, D. G., Young, J. A., and Cook, D. I. (1993) Control of intracellular Ca2+ by adrenergic and muscarinic agonists in mouse mandibular ducts and end pieces. Cell Calcium 14, 631–638.PubMedCrossRefGoogle Scholar
  33. 33.
    Kopp, R., Lambrecht, G., Mutschler, E., Moser, U., Tacke, R., and Pfeiffer, A. (1989) Human HT-29 colon carcinoma cells contain muscarinic M3 receptors coupled to phosphoinositide metabolism. Eur. J. Pharmacol. 172, 397–405.PubMedCrossRefGoogle Scholar
  34. 34.
    Parr, C. E., Sullivan, D. M., Paradiso, A. M., Lazarowski, E. R., Burch, L. H., Olsen, J. C., et al. (1994) Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc. Natl. Acad. Sci. USA 91, 3275–3279.PubMedCrossRefGoogle Scholar
  35. 35.
    Kitamura, K., Singer, W. D., Cano, A., and Miller, R. T. (1995) Gαq and Gα13 regulate NHE-1 and intracellular calcium in epithelial cells. Am. J. Physiol. 268, C101-C110.PubMedGoogle Scholar
  36. 36.
    Runnels, L. W. and Scarlata, S. F. (1999) Determination of the affinities between heterotrimeric G protein subunits and their phospholipase Cβ effectors. Biochemistry 38, 1488–1496.PubMedCrossRefGoogle Scholar
  37. 37.
    Dowal, L., Elliott, J., Popov, S., Wilkie, T. M., and Scarlata, S. (2001) Determination of the contact energies between a regulator of G protein signaling and G protein subunits and phospholinpase Cβ1 Biochemistry 40, 414–421.PubMedCrossRefGoogle Scholar
  38. 38.
    Smrcka, A. V., Hepler, J. R., Brown, K. O., and Sternweis, P. C. (1991) Regulation of polyphosphoinostide-specific phospholipase C activity by purified Gq. Science 251, 804–807.PubMedCrossRefGoogle Scholar
  39. 39.
    Exton, J. H. (1996) Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Ann. Rev. Pharmacol. Toxicol. 36, 481–509.CrossRefGoogle Scholar
  40. 40.
    Stehno-Bittel, L., Krapivinsky, G., Krapivinsky, L., Perez-Terzic, C., and Clapham, D. E. (1995) The G protein βγ subunit transduces the muscarinic receptor signal for Ca2+ release in Xenopus oocytes. J. Biol. Chem. 270, 30,068–30,074.Google Scholar
  41. 41.
    Zeng, W., Xu, X., and Muallem, S. (1996) Gβγ transduces [Ca2+]i oscillations and Gαq, a sustained response during stimulation of pancreatic acinar cells with [Ca2+]i-mobilizing agents. J. Biol. Chem. 271, 18,520–18,526.Google Scholar
  42. 42.
    Arai, H., Tsou, C. L., and Charo, I. F. (1997) Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B: evidence that directed migration is mediated by bg dimers released by activation of Gαi-coupled receptors. Proc. Natl. Acad. Sci. USA 94, 14,495–14,499.Google Scholar
  43. 43.
    Morel, J. L., Macrez, N., and Mironneau, J. (1997) Specific Gq protein involvement in muscarinic M3 receptor-induced phosphatidylinositol hydrolysis and Ca2+ release in mouse doudenal myocytes. Br. J. Pharmacol. 121, 451–458.PubMedCrossRefGoogle Scholar
  44. 44.
    Morris, A. J. and Scarlata, S. (1997) Regulation of effectors by G-protein α- and βγ-subunits. Recent insights from studies of the phospholipase C-β isoenzymes. Biochem. Pharmacol. 54, 429–435.PubMedCrossRefGoogle Scholar
  45. 45.
    Fanning, A. S., and Anderson, J. M. (1999) Protein modules as organizers of membrane structure. Curr. Opin. Cell Biol. 11, 432–439.PubMedCrossRefGoogle Scholar
  46. 46.
    Nitschke, R., Leipziger, J., and Greger, R. (1993) Agonist-induced intracellular Ca2+ transients in HT29 cells. Pflügers Arch. 423, 519–526.PubMedCrossRefGoogle Scholar
  47. 47.
    Muallem, S. and Wilkie, T. M. (1999) G protein-dependent Ca2+ signaling complexes in polarized cells. Cell Calcium 26, 173–180.PubMedCrossRefGoogle Scholar
  48. 48.
    Toescu, E. C. and Petersen, O. H. (1995) Regionspecific activity of the plasma membrane Ca2+ pump and delayed activation of Ca2+ entry characterized the polarized, agonist-evoked Ca2+ signals in exocrine cells. J. Biol. Chem. 270, 8528–8535.PubMedCrossRefGoogle Scholar
  49. 49.
    Park, M. K., Petersen, O. H., and Tepikin, A. V. (2000) The endoplasmic reticulum as one continuous Ca2+ pool: visualization of rapid Ca2+ movements and equilibration. EMBO J. 19, 5729–5739.PubMedCrossRefGoogle Scholar
  50. 50.
    Petersen, O. H., Tepikin, A., and Park, M. K. (2001) The endoplasmic reticulum: one continuous or several separate Ca2+ stores? Trends Neurosci. 24, 271–276.PubMedCrossRefGoogle Scholar
  51. 51.
    Xu, X., Croy, J. T., Zeng, W., Zhao, L., Davignon, I., Popov, S., et al. (1998) Promiscuous coupling of receptors to Gq class α-subunits and effector proteins in pancreatic and submandibular gland cells. J. Biol. Chem. 273, 27,275–27,279.Google Scholar
  52. 52.
    Montell, C. (1998) TRP trapped in fly signaling web. Curr. Opin. Neurobiol. 8, 389–397.PubMedCrossRefGoogle Scholar
  53. 53.
    Weinman, E. J., Steplock, D., Donowitz, M., and Shenolikar, S. (2000) NHERF associations with sodium-hydrogen exchanger isoform 3 (NHE3) and ezrin are essential for cAMP-mediated phosphorylation and inhibition of NHE3. Biochemistry 39, 6123–6129.PubMedCrossRefGoogle Scholar
  54. 54.
    Shin, D. M., Zhao, X. S., Zeng, W., Mozhayeva, M., and Muallem, S. (2000) The mammalian Sec6/8 complex interacts with Ca2+ signaling complexes and regulates their activity. J. Cell. Biol. 150, 1101–1112.PubMedCrossRefGoogle Scholar
  55. 55.
    Huizen, R. V., Miller, K., Chen, D. M., Li, Y., Lai, Z. C., Raab, R. W., et al. (1998) Two distantly positioned PDZ domains mediate multivalent INAD-phopholipase C interactions essential for G protein-coupled signaling. EMBO J. 17, 2285–2297.PubMedCrossRefGoogle Scholar
  56. 56.
    Tang, Y., Tang, J., Chen, Z., Trost, C., Flockerzi, V., Li, M., et al. (2000) Association of mammalian trp4 and phospholipase, C isozymes with a PDZ domain-containing protein, NHERF. J. Biol. Chem. 275, 37,559–37,564.Google Scholar
  57. 57.
    Berman, D. M. and Gilman, A. G. (1998) Mammalian RGS proteins: barbarians at the gate. J. Biol. Chem. 273, 1269–1272.PubMedCrossRefGoogle Scholar
  58. 58.
    Ross, E. M. and Wilkie, T. M. (2000) GTPase-activating proteins for heterotrimeric G proteis: regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem. 69, 795–827.PubMedCrossRefGoogle Scholar
  59. 59.
    Zeng, W., Xu, X., Popov, S., Mukhopadhyay, S., Chidiac, P., Swistok, J., et al. (1998) The N-terminal domain of RGS4 confers receptor-selective inhibition of G protein signaling. J. Biol. Chem. 273, 34,687–34,690.Google Scholar
  60. 60.
    Xu, X., Zeng, W., Popov, S., Berman, D. M., Davignon, I., Yu, K., et al. (1999) RGS proteins determine signaling specificity of Gq-coupled receptors. J. Biol. Chem. 274, 3549–3556.PubMedCrossRefGoogle Scholar
  61. 61.
    Heximer, S. P., Lim, H., Bernard, J. L., and Blumer, K.J. (2001) Mechanisms governing subcellular localization and function of human RGS2. J. Biol. Chem. 276, 14,195–14,203.Google Scholar
  62. 62.
    Luo, X., Popov, S., Bera, A. K., Wilkie, T. M. and Muallem, S. (2001) RGS proteins provide biochemical control of agonist-evoked [Ca2+]i oscillations. Mol. Cell. 7, 651–660.PubMedCrossRefGoogle Scholar
  63. 63.
    Oh, P. and Schnitzer, J. E. (2001) Segregation of heterotrimetric G proteins in cell surface microdomains. Gq binds caveolin to concentrate in caveolae, whereas Gi and Gs target lipid rafts by default. Mol. Biol. Cell. 12, 685–698.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Philip Poronnik
    • 1
    • 2
  • Michelle M. Cummins
    • 1
  • Lauren M. O'Mullane
    • 1
  • David I. Cook
    • 1
  1. 1.Department of Physiology (F13)University of SydneySyndneyAustralia
  2. 2.Department of Molecular Medicine, Kolling InstituteUniversity of Sydney and Royal North Shore HospitalSt LeonardsAustralia

Personalised recommendations