Cell Biochemistry and Biophysics

, Volume 36, Issue 2–3, pp 191–207 | Cite as

Heterogeneous amyloid-formed ion channels as a common cytotoxic mechanism

Implications for therapeutic strategies against amyloidosis
  • Joseph I. Kourie
  • Amie L. Culverson
  • Peter V. Farrelly
  • Christine L. Henry
  • Karina N. Laohachai
Review article


The amyloidoses consist of human and animal chronic, progressive, and sometimes fatal diseases that are characterized by the deposition of insoluble proteinaceous amyloid fibrils in various tissues. Despite the biochemical diversity of amyloids, they share certain properties. The amphipathic and the charged nature of many amyloid-forming peptides point to their intrinsic ability to form diverse β-sheet-based aggregates and channel types in negatively charged membranes. We hypothesize that the formation of heterogeneous channels represents a common cytotoxic mechanism that accentuates the changes in the signal transduction that underlie amyloid-induced cell malfunction. One group of amyloid-forming peptides that could mediate their action via the formation of heterogeneous channels includes the extensively examined prions and amyloid β protein that are associated with conformational neurodegenerative diseases. The aim of this study is to examine heterogeneous channels formed in bilayers with amyloid-forming peptides as a common mechanism of malfunction of signal transduction. the observed amyloid-formed channel types include the following. (1) Natriuretic peptides: (i) 68-pS H2O2- and Ba2+-sensitive channel with fast kinetics. The fast channel had three modes (spike mode, burst mode, and open mode), which differ in their kinetics but not in their conductance properties; (ii) a 273-pS inactivating large conductance channel; and (iii) a 160-pS transiently activated channel. (2) Prions: (i) a 140-pS GSSG- and TEA-sensitive channel with fast kinetics; (ii) a 41-pS dithiothreitol (DTT)-sensitive channel with slow kinetics; (iii) a 900 to 1444-pS large channel. (3) Amyloid β protein: (i) a 17 to 63-pS AßP [1–40]-formed “bursting” fast cation channel, (ii) the AßP [1–40]-formed “spiky” fast cation channel with a similar kinetics to the “bursting” fast channel except for the absence of the long intraburst closures, (iii) 275-pS AßP[1–40]-formed medium conductance channel, and (iv) 589- to 704-pS AßP[1–40]-formed inactivating large conductance channel. This heterogeneity is one of the most common features of these charged cytotoxic amyloid-formed channels, reflecting these channels' ability to modify multiple cellular functions. Although the diversity of these aggregated-peptideformed channels may indicate that a stochastic mechanism governs their formation, the fact that certain channel types are often observed point to preferential channel protein conformations. In addition, the fact that other amyloids have similar structural properties (e.g. hydrophobicity, charged residues, and β-structural linkages, suggests that, despite the intrinsic ability to form diverse conformations, certain conformations and, hence, certain channel types could be a common pathologic conformation among these amyloid-forming peptides. It is concluded that conformation-based channel diversity is an important mechanism for enhancing the toxicity of amyloid-forming peptides. The cytotoxic nature of these self-associated β-based protein channels suggests that under normal physiological conditions cells employ well-evolved protective mechanisms against seeding and/or propagation of channel-forming peptides; for example, (a) compartmentalization of these peptides as membrane bound in internal vesicles and/or (b) degradation of these peptides by enzymes. The pharmacological diversity of the amyloid-forming channels implies that multiple therapeutic interventions may be necessary for blocking and reversing heterogeneous channel formations and preventing their associated diseases.

Index Entries

Ion channel amyloid cytotoxicity amyloid β protein prion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kourie, J. I., Henry, C. L., and Farrelly, P. V. (2001) Diversity of amyloid β protein fragment [1–40]-formed channels. Cell. Mol. Neurobiol. 21, 255–284.PubMedCrossRefGoogle Scholar
  2. 2.
    Arispe, N., Pollard, H. B., and Rojas, E. (1993) Giant multilevel cation channels formed by alzheimer disease amyloid β-protein. Proc. Natl. Acad. Sci. USA 90, 10,573–10,577.Google Scholar
  3. 3.
    Arispe, N., Rojas, E., and Pollard, H. B. (1993) Alzheimer disease amyloid β protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc. Natl. Acad. Sci. USA 90, 567–571.PubMedCrossRefGoogle Scholar
  4. 4.
    Arispe, N., Pollard, H. B., and Rojas, E. (1994) β-amyloid Ca2+-channel hypothesis for neuronal death in Alzheimer disease. Mol. Cell. Biochem. 140, 119–125.PubMedCrossRefGoogle Scholar
  5. 5.
    Arispe, N., Pollard, H. B., and Rojas, E. (1996) Zn2+ interaction with Alzheimer amyloid β protein calcium channels. Proc. Natl. Acad. Sci. USA 93, 1719–1715.CrossRefGoogle Scholar
  6. 6.
    Durell, S. R., Guy, H. R., Arispe, N., Rojas, E., and Pollard, H. B. (1994) Theoretical models of the ion channel structure of amyloid beta-protein. Biophys. J. 67, 137–145.Google Scholar
  7. 7.
    Pollard, H. B., Arispe, N., and Rojas, E. (1995) Ion channel hypothesis for Alzheimer amyloid peptide neurotoxicity. Cell. Mol. Neurobiol. 15, 513–526.PubMedCrossRefGoogle Scholar
  8. 8.
    Kawahara, M., Arispe, N., Kuroda, Y., and Rojas, E. (1997) Alzheimer's disease amyloid beta-protein forms Zn2+-sensitive cation-selective channels across excised membrane patches from hypothalamic neurons. Biophys. J. 73, 67–75.PubMedGoogle Scholar
  9. 9.
    Kawahara, M., Kuroda, Y., Arispe, N., and Rojas, E. (2000) Alzheimer's disease β-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in hypothalamic GnRH neuronal cell line. J. Biol. Chem. 275, 14,077–14,063.Google Scholar
  10. 10.
    Mirzabekov, T. A., Lin, M. C., Yuan, W. L., Marshall, P. J., Carman, M., Tomaselli, K., et al. (1994) Channel formation in planar lipid bilayers by a neurotoxic fragment of the beta-amyloid peptide. Biochem. Biophys. Res. Commun. 202, 1142–1148.PubMedCrossRefGoogle Scholar
  11. 11.
    Hirakura, Y., Lin, M. C., and Kagan, B. L. (1999) Alzheimer amyloid Aβ1–42 channels: effects of solvent, pH, and Congo Red. J. Neurosci. Res. 57, 458–466.PubMedCrossRefGoogle Scholar
  12. 12.
    Hirakura, Y., Yiu, W. W., Yamamoto, A., and Kagan, B. L. (2000) Amyloid peptide channels: blockade by zinc and inhibition by congo red. Amyloid 7, 194–199.PubMedCrossRefGoogle Scholar
  13. 13.
    Kourie, J. I. (2001). Mechanisms of amyloid-induced modification in the electrical properties of membranes. Cell. Mol. Neurobiol. 21, 173–213.PubMedCrossRefGoogle Scholar
  14. 14.
    Catterall, W. (1992) Cellular and molecular biology of voltage-gated sodium channels. Physiol. Rev. 72, S15-S48.PubMedGoogle Scholar
  15. 15.
    Kourie, J. I. (2001) Mechanisms of prion-induced modification in membrane transport systems. Chem. Biol. Interact. 138, 1–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Bush, A. I., Pettingell, W. H., Jr, Paradis, M. D., and Tanzi, R. E. (1994). Modulation of A beta adhesiveness and secretase site cleavage by zinc. J. Biol. Chem. 269, 12,152–12,158.Google Scholar
  17. 17.
    Kourie, J. I., and Culverson, A. (2000) Prion peptide fragment PrP[106–126] forms distinct cation channel types. J. Neurosci. Res. 62, 120–133.PubMedCrossRefGoogle Scholar
  18. 18.
    Lin, M-C., Mirzabekov, T., and Kagan, B. L. (1997) Channel formation by a neurotoxic prion protein fragment. J. Biol. Chem. 272, 44–47.PubMedCrossRefGoogle Scholar
  19. 19.
    Manunta, M., Kunz, B., Sandmeier, E., Christen, P., and Schindler, H. (2000) Reported channel formation by prion protein fragment 106–126 in planar lipid bilayer cannot be reproduced. FEBS Lett. 474, 252–256.CrossRefGoogle Scholar
  20. 20.
    Kourie, J. I., Farrelly, P. V., and Henry, C. L. (2001) Channel activity of deamidated isoforms of prion protein fragment 106–126 in planar lipid bilayers. J. Neurosci. Res. 66, 214–220.PubMedCrossRefGoogle Scholar
  21. 21.
    Kunz, E., Sandmeier, E., and Christen, P. (1999) Neurotoxicity of prion peptide 106–126 not confirmed. FEBS Lett. 458, 65–68.PubMedCrossRefGoogle Scholar
  22. 22.
    Chapron, Y., Peyrin, J-M., Crouzy, S., Jaegly, A., and Dormont, D. (200) Theoretical analysis of the implication of PrP in neuronal death during transmissible subacute spongiform encephalopathies: hypothesis of a PrP oligomeric channel. J. Theor. Biol. 204, 103–111.CrossRefGoogle Scholar
  23. 23.
    Kourie, J. I. (1999) Calcium dependence of C-type natriuretic peptide-formed fast K+ channel. Am. J. Physiol. 277, C43-C50.PubMedGoogle Scholar
  24. 24.
    Jobling, M. F., Huang, X., Stewart, L. R., Barnham, K. J., Curtain, C., Volitakis, I., et al. (2001) Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP106–126. Biochemistry 40, 8073–8084.PubMedCrossRefGoogle Scholar
  25. 25.
    Sandmeier, E., Kunz, E., Hunziker, P., Sack, R., and Christen, P. (1999) Spontaneous deamidation and isomerization of Asn 108 in prion peptide 106–126 and in full-length prion protein. Biochem. Biophys. Res. Commun. 261, 578–583.PubMedCrossRefGoogle Scholar
  26. 26.
    Rauk, A., and Armstrong, D. A. (2000) Influence of β-sheet structure on the susceptibility of proteins to backbone oxidative damage: preference of αC-central radical formation at glycine residues of antiparallel β-sheets. J. Am. Chem. Soc. 122, 4185–4192.CrossRefGoogle Scholar
  27. 27.
    Brown, D. R., Wong, B. S., Hafiz, F., Clive, C., Haswell, S. J., and Jones, I. M. (1999) Normal prion protein has an activity like that of super-oxide dismutase. Biochem. J. 344, 1–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Brown, D. R., Clive, C., and Haswell, S. J. (2001) Antioxidant activity related to copper binding of native prion protein. J. Neurochem. 76, 69–76.PubMedCrossRefGoogle Scholar
  29. 29.
    Florio, T., Grimaldi, M., Scorziello, A., Salmona, M., Bugiani, O., Tagliavini, F., et al. (1996) Intracellular calcium rise through L-type calcium channels, as molecular mechanism for prion protein fragment 106–126-induced astroglial proliferation. Biochem. Biophys. Res. Commun. 228, 397–405.PubMedCrossRefGoogle Scholar
  30. 30.
    Barrow, P. A., Holmgren, C. D., Tapper, A. J., and Jefferys, J. G. (1999) Intrinsic physiological and morphological properties of principal cells of the hippocampus and neocortex in hamsters infected with scrapie. Neurobiol. Dis. 6, 406–423.PubMedCrossRefGoogle Scholar
  31. 31.
    Kojima, M., Minamino, N., Kangawa, K., and Matsuo, H. (1990) Cloning and sequence analysis of a cDNA encoding precursor for rat C-type natriuretic peptide (CNP). FEBS Lett. 276, 209–213.PubMedCrossRefGoogle Scholar
  32. 32.
    Sudoh, T., Minamino, N., Kenji, K., and Matsuo, H. (1990) C-Type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem. Biophys. Res. Commun. 168, 863–870.PubMedCrossRefGoogle Scholar
  33. 33.
    Komatsu, Y., Nakao, K., Suga, S., Ogawa, Y., Mukoyama, M., Arai, H., et al. (1991) C-Type natriuretic peptide (CNP) in rats and humans. Endocrinology 129, 1104–1106.PubMedCrossRefGoogle Scholar
  34. 34.
    Mukoyama, M., Nakao, K., Hosoda, K., Suga, S., Saito, Y., Ogawa, Y., et al. (1991) Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J. Clin. Invest. 87, 1402–1412.PubMedGoogle Scholar
  35. 35.
    Suga, S., Itoh, H., Komatsu, Y., Ogawa, Y., Hama, N., Yoshimasa, T., et al. (1993) Cytokine-induced C-type natriuretic peptide (CNP) secretion from vascular endothelial cells: evidence for CNP as a novel autocrine paracrine regulator from endothelial cells. Endocrinology 133, 3038–3041.PubMedCrossRefGoogle Scholar
  36. 36.
    Suga, S., Nakao, Hosoda, K., Mukoyama, M., Ogawa, Y., Shirakami, G., et al. (1992) Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology 130, 229–239.PubMedCrossRefGoogle Scholar
  37. 37.
    de Plater, G. M., Martin, R. L., and Milburn, P. J. (1995) A pharmacological and biochemical investigation of the venom from the platypus (Ornithorhynchus anatinus). Toxicon 33, 157–169.PubMedCrossRefGoogle Scholar
  38. 38.
    de Plater, G. M., Martin, R. L., and Milburn, P. J. (1998a) The natriuretic peptide (ovCNP) from platypus (Ornithorhynchus anatinus) venom relaxes the isolated rat uterus and promotes oedema and mast cell histamine release. Toxicon 36, 847–857.PubMedCrossRefGoogle Scholar
  39. 39.
    Suga, S., Nakao, K., Itoh, H., Komatsu, Y., Ogawa, Y., Hama, N., et al (1992) Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of “vascular natriuretic peptide system”. J. Clin. Invest. 90, 1145–1149.PubMedCrossRefGoogle Scholar
  40. 40.
    Murayama, N., Hayashi, M., Ohi, H., Ferreira, L. A. F., Hermann, V., Saito, H., et al. (1997) Cloning and sequence analysis of a Bothrops jararaca cDNA encoding a precursor of seven bradykinin-potentiating peptides and a C-type natriuretic peptide. Proc. Nat. Acad. Sci. USA 94, 1189–1193.PubMedCrossRefGoogle Scholar
  41. 41.
    Kourie, J. I. (1999) Synthetic mammalian C-type natriuretic peptide forms large cation channels. FEBS Lett. 445, 57–62.PubMedCrossRefGoogle Scholar
  42. 42.
    Kourie, J. I. (1999) Characterisation of a C-type natriuretic peptide (CNP-39)-formed cation-selective channel from platypus (Ornithrhynchus anatimus) venom. J. Physiol. 518, 359–369.PubMedCrossRefGoogle Scholar
  43. 43.
    Stingo, A. J., Clavell, A. L., Arthus, L., and Burnett, J. C., Jr. (1992) Cardiovascular and renal actions of C-type natriuretic peptide. Am. J. Physiol. 262, H308-H312.PubMedGoogle Scholar
  44. 44.
    Wei, C. M., Hu, S., Miller, V. M., and Burnett, J. C. J. (1994) Vascular actions of C-type natriuretic peptide in isolated porcine coronary arteries and coronary vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 205, 765–771.PubMedCrossRefGoogle Scholar
  45. 45.
    White, R. E., Lee, A. B., Shcherbatko, A. D., Lincoln, T. M., Schonbrunn, A., and Armstrong, D. L. (1993) Potassium channel stimulation by natriuretic peptides through cGMP-dependent dephosphorylation. Nature 361, 263–266.PubMedCrossRefGoogle Scholar
  46. 46.
    Kelley, T. J., Cotton, C. U., and Drumm, M. L. (1997) In vivo activation of CFTR-dependent chloride transport in murine airway epithelium by CNP. Am. J. Physiol. 273, L1065-L1072.PubMedGoogle Scholar
  47. 47.
    Kelley, T. J., Cotton, C. U., and Drumm, M. L. (1998) Regulation of amiloride-sensitive sodium absorption in murine airway epithelium by C-type natriuretic peptide. Am. J. Physiol. 273, L990-L996.Google Scholar
  48. 48.
    Solomon, R., Protter, A., McEnroe, G., Porter, J. G., and Silva, P. (1992) C-Type natriuretic peptides stimulate chloride secretion in the rectal gland of Squalus acanthias. Am. J. Physiol. 262, R707-R771.PubMedGoogle Scholar
  49. 49.
    Kurochkin, I. V. (1998) Amyloidogenic determinant as a substrate recognition motif of insulin-degrading enzyme. FEBS Lett. 427, 153–156.PubMedCrossRefGoogle Scholar
  50. 50.
    Takemura, G., Takatsu, Y., Doyama, K., Itoh, H., Saito, Y., Koshiji, M., et al. (1998) Expression of atrial and brain natriuretic peptides and their genes in hearts of patients with cardiac amyloidosis. J. Am. Coll. Cardiol. 31, 754–765.PubMedCrossRefGoogle Scholar
  51. 51.
    Takahashi, M., Hoshii, Y., Kawano, H., Gondo, T., Yokota, T., Okabyashi, H., et al. (1998) Ultrastructural evidence for the formation of amyloid fibrils within cardiomyocytes in isolated atrial amyloid. Amyloid 5, 35–42.PubMedGoogle Scholar
  52. 52.
    Barger, S. W. and Mattson, M. P. (1995) The secreted form of the Alzheimer's beta-amyloid precursor protein stimulates a membrane-associated guanylate cyclase. Biochem. J. 311, 45–47.PubMedGoogle Scholar
  53. 53.
    Jan, L. Y. and Jan, Y. H. (1997) Receptor-regulated ion channels. Curr. Opin. Cell Biol. 9, 155–160.PubMedCrossRefGoogle Scholar
  54. 54.
    Hirakura, Y. and Kagan, B. L. (1999) Channel formation in the pathogenesis of Alzheimer's disease and other amyloidoses. Einstein Qu. J. Biol. Med. 16, 124–129.Google Scholar
  55. 55.
    Hama, N., Itoh, H., Shirakami, G., Suga, S., Komatsu, Y., Yoshimasa, T., et al. (1994) Detection of C-type natriuretic peptide in human circulation and marked increase of plasma CNP level in septic shock patients. Biochem. Biophys. Res. Comm., 198, 1177–1182.PubMedCrossRefGoogle Scholar
  56. 56.
    de Plater G. M., Martin, R. L., and Milburn, P. J. (1998) A C-Type natriuretic peptide from the venom of the platypus (Ornithorhynchus anatinus): structure and pharmacology. Comp. Biochem. Physiol. C 120, 99–110.PubMedCrossRefGoogle Scholar
  57. 57.
    de Plater, G. M. (1998) Fractionation, primary structural characterisation and biological activities of polypeptides from the venom of the platypus (Ornithorhynchus anatinus). Ph.D. thesis, Australian National University. Canberra, Australia.Google Scholar
  58. 58.
    Kourie, J. I. and Rive, M. J. (1999) Role of natriuretic peptides in ion transport mechanisms. Med. Res. Rev. 19, 75–94.PubMedCrossRefGoogle Scholar
  59. 59.
    Hille, B. (1992) Ionic Channels of Excitable Membranes (Hille, B., ed.), Sinaure Associates, Sunderland, MA.Google Scholar
  60. 60.
    Merrill, A. R., Steer, B. A., Prentice, G. A., Weller, M. J., and Szabo, A. G. (1997) Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Biochemistry 36, 6874–6884.PubMedCrossRefGoogle Scholar
  61. 61.
    Minn, A. J., Velez, P., Schendel, S. L., Liang, H., Muchmore, S. W., Fesik, S. W., et al. (1997) Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385, 353–357.PubMedCrossRefGoogle Scholar
  62. 62.
    Hinrichesn, R. D. (1993) Calcium-Dependent Potassium Channels R. G. Landes Company, Austin, TX.Google Scholar
  63. 63.
    Pallotta, B. (1985) N-Bromoacetamide removes a calcium-dependent component of channel opening from calcium-activated potassium channels in rat skeletal muscle. J. Gen. Physiol. 86, 601–611.PubMedCrossRefGoogle Scholar
  64. 64.
    Marrion, N. V. and Tavalin, S. J. (1998) Selective activation of Ca2+-activated K+ channels by colocalized Ca2+ channels in hippocampal neurons. Science 395, 900–905.Google Scholar
  65. 65.
    Yagi, S., Becker, P. C., and Fay, F. S. (1988) Relationship between force and Ca2+ concentration in smooth muscle as revealed by measurement on single cells. Proc. Natl. Acad. Sci. USA 85, 4109–4113.PubMedCrossRefGoogle Scholar
  66. 66.
    Koller, K. J., Lowe, D. G., Bennett, G. L., Minamino, W., Kangawa, K., Matsuo, H., et al. (1991) Selective activationof the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252, 120–123.PubMedCrossRefGoogle Scholar
  67. 67.
    Morita, H., Hagike, M., Horiba, T., Miyake, K., Ohyama, H., Yamaouchi, H., et al. (1992) Effects of brain natriuretic peptide and C-type natriuretic peptide infusion on urine flow and jejunal absorption in anesthetized dogs. Jpn. J. Physiol. 42, 349–353.PubMedCrossRefGoogle Scholar
  68. 68.
    Kourie, J. I., Hanna, E. A., and Henry, C. L. (2001). Properties of alpha human atrial natriuretic peptide (α-hANP)-formed ion channels. Can. J. Physiol. Pharmacol. 79, 654–664.PubMedCrossRefGoogle Scholar
  69. 69.
    Mirzabekov, T. A., Lin, M. C., and Kagan, B. L. (1996) Pore formation by the cytotoxic islet amyloid peptide amylin. J. Biol. Chem. 271, 1988–1992.PubMedCrossRefGoogle Scholar
  70. 70.
    McLean, L. R. and Balasubramaniam, A. (1992) Promotion of beta-structure by interaction of diabetes associated polypeptide (amylin) with phosphatidylcholine. Biochem. Biophys. Acta 1122, 317–320.PubMedGoogle Scholar
  71. 71.
    Charge, S. B., de Koning, E. J., and Clark, A. (1995) Effect of pH and insulin on fibrillogenesis of islet amyloid polypeptide in vitro. Biochemistry 34, 14,588–14,593.CrossRefGoogle Scholar
  72. 72.
    Janson, J., Ashley, R. H., Harrison, D., McIntyre, S., and Butler, P. C. (1999) The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48, 491–498.PubMedCrossRefGoogle Scholar
  73. 73.
    Munoz, F. J. and Inestrosa, N. C. (1999). Neurotoxicity of acetylcholinesterase amyloid beta-peptide aggregates is dependent on the type of Abeta peptide and the AchE concentration present in the complexes. FEBS Lett. 450, 205–209.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Joseph I. Kourie
    • 1
  • Amie L. Culverson
    • 1
  • Peter V. Farrelly
    • 1
  • Christine L. Henry
    • 1
  • Karina N. Laohachai
    • 1
  1. 1.Membrane Transport Group, Department of Chemistry, The FacultiesThe Australian National UniversityCanberraAustralia

Personalised recommendations