Advertisement

Cell Biochemistry and Biophysics

, Volume 34, Issue 2, pp 257–281 | Cite as

Fluorescent pteridine nucleoside analogs

A window on DNA interactions
  • Mary E. Hawkins
Review Article

Abstract

Pteridine nucleoside analog probes are highly fluorescent and offer different approaches to monitor subtle DNA interactions with other molecules. Similarities in structure and size to native nucleosides make it possible to incorporate these probes into oligonucleotides through the standard deoxyribose linkage. These probes are formulated as phosphoramidites and incorporated into oligonucleotides using automated DNA synthesis. Their position within the oligonucleotide renders them exquisitely sensitive to changes in structure as the oligonucleotide meets and reacts with other molecules. Changes are measured through fluorescence intensity, anisotropy, lifetimes, spectral shifts, and energy transfer. The fluorescence properties of pteridine nucleoside analogs as monomers and incorporated into single and double stranded oligonucleotides are reviewed. The two guanosine analogs, 3MI and 6MI, and two adenosine analogs, 6MAP and DMAP, are reviewed in detail along with applications utilizing them.

Keywords

DMAP Cell Biochemistry Biophysics Volume Fluorescence Anisotropy Pteridine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hawkins, M. E., Pfleiderer, W., Balis, F. M., Porter, D. and Knutson, J. R. (1997) Fluorescence Properties of Pteridine Nucleoside Analogs as Monomers and Incorporated into Oligonucleotides. Analytical Biochemistry 244, 86–95.PubMedCrossRefGoogle Scholar
  2. 2.
    Hawkins, M. E., Pfleiderer, W., Mazumder, A., Pommier, Y. G., and Balis, F. M. (1995) Incorporation of a Fluorescent Guanosine Analog into Oligonucleotides and Its Application to a Real Time Assay for the HIV-I Integrase 3′-processing Reaction. Nucleic Acids Research 23, 2872–2880.PubMedCrossRefGoogle Scholar
  3. 2a.
    Wojtuszewski, K., Hawkins, M., Cole, J. L., Mukerji, I. (2001) Hu binding to DNA: evidence for multiple complex formation and DNA bending. Biochemistry. 40, 2588–2598.PubMedCrossRefGoogle Scholar
  4. 3.
    Moser, A. M., Patel, M., Yoo, H., Balis, F. M., and Hawkins, M. E. (2000) Real-Time Fluorescence Assay for O6-Alkylguanine-DNA Alkyltransferase. Analytical Biochemistry 281, 216–222.PubMedCrossRefGoogle Scholar
  5. 4.
    Stryer, L. and Haugland, R. P. (1967) Energy transfer: a spectroscopic ruler. Proc. Natl. Acad. Sci. 58, 719–726.PubMedCrossRefGoogle Scholar
  6. 5.
    Driscoll, S. L., Hawkins, M. E., Balis, F. M., Pfleiderer, W., and Laws, W. R. (1997) Fluorescence Properties of a New Guanosine Analog Incorporated into Small Oligonucleotides. Biophysical Journal 73, 3277–3286.PubMedGoogle Scholar
  7. 6.
    Garcia de la Torre, J. S., Navarro, M. C., Martinez, L., Diaz, F. G., and Cascales, J. J. L. (1994) HYDRO: a computer program for the prediction of hydrodynamic properties of macromolecules. Biophysical Journal 14 81–139.Google Scholar
  8. 7.
    Espositio, D. and Craigie, R. (1999) HIV integrase structure and function. Adv Virus Res 52, 319–333.CrossRefGoogle Scholar
  9. 8.
    Asante-Appiah, E. and Skalka, A. (1999) HIV-1 integrase: structural organization, conformational changes, and catalysis. Adv. Virus Res. 52,Google Scholar
  10. 9.
    Fujiwara, T. and Craigie, R. (1989) Integration of Mini-retroviral DNA: A Cell-free Reaction for Biochemical Analysis of Retroviral Integration. Proceedings of the National Academy of Sciences 86, 3065–3069.CrossRefGoogle Scholar
  11. 10.
    Brown, P. O., Bowerman, B., Varmus, H. E., and bishop, J. M. (1987) Correct Integration of Retroviral DNA In Vitro. Cell 49, 347–356.PubMedCrossRefGoogle Scholar
  12. 11.
    Brown, P. O., Bowerman, B., Varmus, H. E., and Bishop, J. M. (1989) Retroviral Integration: Structure of the Initial Covalent Product and Its Precursor, and a Role for the Viral IN Protein. Proceedings of the National Academy of Sciences 86, 2525–2529.CrossRefGoogle Scholar
  13. 12.
    Vink, C., Banks, M., Bethell, R., and Plasterk, R. H. A. (1994) Nucleic Acids Research 22, 2176–2177.PubMedCrossRefGoogle Scholar
  14. 13.
    Ellison, K. S., Dogliotti, E., Connors, T. D., Basu, A. K., and M., E. (1989) Site-specific mutagenesis by O6-alkylguanines located in the chromosomes of mammalian cells; influence of mammalian O6-alkylguanine-DNA alkyltransferase. Proc. Natl. Acad. Sci. 86, 8620–8624.PubMedCrossRefGoogle Scholar
  15. 14.
    Bogden, P. M., Eastman, A., and Bresnick, E. (1981) A system in mouse liver for the repair of O6-methylguanine lesions in methylated DNA. Nucleic Acids Research 9, 3089–3103.PubMedCrossRefGoogle Scholar
  16. 15.
    Pegg, A. E. et al. (1982) Removal of O6-methylguanine from DNA by human liver fractions. Proc. Natl. Acad. Sci. 79, 5162–5165.PubMedCrossRefGoogle Scholar
  17. 16.
    Wilson, B. D., Strauss, M., Stickells, B. J., Hoalvan Helden, E. G., and Hoal-van Helden, P. D. (1994) An assay for O6-alkylguanine-DNA alkyltransferase based on restriction endonucleoase inhibition and magnetic bead separation of products. Carcinogenesis 15, 2143–2148.PubMedCrossRefGoogle Scholar
  18. 17.
    Bewley, C. A., Gronenborn, A. M., and Clore, G. M. (1998) Minor Groove-Binding Architectural Proteins: Structure, Function and DNA Recognition. Ann. Rev. Biophys. Biomol. Struct. 27, 105–131.CrossRefGoogle Scholar
  19. 18.
    Fried, M. and Crothers, D. M. (1981) Equilibria and Kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucl. Acids Res. 9, 6505–6525.PubMedCrossRefGoogle Scholar
  20. 19.
    Fried, M. G. and Liu, G. (1994) Molecular sequestration stabilizes CAP-DNA complexes during polyacrylamide gel electrophoresis. Nucl. Acids Res. 22, 5054–5059.PubMedCrossRefGoogle Scholar
  21. 20.
    Paull, T., Haykinson, M., and Johnson, R. (1993) The nonspecific DNA-binding and bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structure. Genes Dev. 7, 1521–1534.PubMedCrossRefGoogle Scholar
  22. 21.
    Hodges-Garcia, Y., Hagerman, P. J., and Pettijohn, D. E. (1989) DNA Ring Closure Mediated by Protein HU. J. Biol. Chem. 264, 14621–14623.PubMedGoogle Scholar
  23. 22.
    Crothers, D. M. and Shakked, Z. DNA Bending by adenine-thymine tracts (ed. Neidle, S.) (Oxford University Press, Oxford, 1999).Google Scholar
  24. 23.
    Chan, S. S., Breslauer, K. J., Austin, R. H., and Hogan, M. E. (1993) Thermodynamics and Premelting Conformational Changes of Phased (dA)5 Tracts. Biochemistry 29, 6161–61171.CrossRefGoogle Scholar
  25. 24.
    Chan, S. S., Austin, R. H., Mukerji, I. and Spiro, T. G. (1997) Temperature-Dependent Ultraviolet Resonance Raman Spectroscopy of the Premelting State of dA.dT DNA. Biophysical Journal 72, 1512–1520.PubMedCrossRefGoogle Scholar
  26. 25.
    Park, Y. W. and Breslaueer, K. J. (1991) A Spectroscopic and Calorimetric Study of the Melting Behaviors of a ‘bent’ and ‘normal’ DNA Duplex:[d(GA4T4C)]2 versus [d(GT4A4C)]2. Proceedings of the National Academy of Sciences 88, 1551–1555.CrossRefGoogle Scholar
  27. 26.
    deHaseth, P. L., Zupancic, M., and Record Jr., M. T. (1998) RNA polymerase-promoter interaction: the cmings and goings of RNA polymerase. J. Bacteriol 180, 3019–3025.PubMedGoogle Scholar
  28. 27.
    Marr, M. T. and Roberts, J. W. (1997) Promoter recognition as measured by binding of RNA polymerase to nontemplate strand oligonucleotides. Science 276, 1258–1260.PubMedCrossRefGoogle Scholar
  29. 28.
    Savinkova, L. K. et al. (1993) Eschericia coli RNA polymerase interaction with the oligonribonucleotides homologous to “−10” and “−35” regions of bacterial spc promoters. Mol. Biol. 27, 33–37.Google Scholar
  30. 29.
    Sullivan, J. J., Bjornson, K. P., Sowers, L. C., and deHaseth, P. L. (1997) Spectroscopic determination of open complex formation at promoters for Escherichia coli RNA polymerase. Biochemistry 36, 8005–8012.PubMedCrossRefGoogle Scholar
  31. 30.
    Strainic, J., M. G., Sullivan, J. J., Velevis, A., and deHaseth, P. L. (1998) Promoter recognition by Escherichia coli RNA polymerase: Effects of the UP element on open complex formation and promoter clearance. Biochemistry 37, 18074–18080.PubMedCrossRefGoogle Scholar
  32. 31.
    Fedoriw, A. M., Liu, H., Anderson, V. E., and deHaseth, P. L. (1998) Equilibrium and kinetic parameters of the sequence-specific interaction of Escherichia coli RNA polymerase with nontemplate strand oligodeoxyribonucleotides. Biochemistry 37, 11971–11979.PubMedCrossRefGoogle Scholar
  33. 32.
    McClure, W., Hawley, D., and Malan, T. P. (1984) The Mechanism of RNA Polymerase Activation on the Lambda PRM and lac P+ promoters.,Google Scholar
  34. 33.
    Rao, L. et al. (1994) Factor independent activation of rrnB P1. An “extended” promoter with an upstream element that dramatically increases promoter strength. J. Mo. Biol. 235, 1421–1435.CrossRefGoogle Scholar
  35. 34.
    Cossum, P. A. et al. (1993) Disposition of the 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats. J. Pharmacol. Exp. Ther. 267, 1181–1190.PubMedGoogle Scholar
  36. 35.
    Meeker, R., Legrand, G., Ramirez, J., Smith, T., and Shih, Y. H. (1995) Antisense vasopressin oligonucleotides: Uptake, turnover, distribution, toxicity and behavior. Journal of Neuroendocrinology 7, 419–428.PubMedCrossRefGoogle Scholar
  37. 36.
    Oberbauer, R., Schreiner, G. F., and Meyer, T. W. (1995) Renal uptake of an 18-mer phosphorothioate oligonucleotide. Kidney International 48, 1226–1232.PubMedCrossRefGoogle Scholar
  38. 37.
    Ogawa, S., Brown, H. E., Okano, H. J., and Pfaff, D. W. (1995) Cellular uptake of intracerebrally administered oligodeoxynucleotides in mouse brain. Regul. Pept. 59, 143–149.PubMedCrossRefGoogle Scholar
  39. 38.
    Rappaport, J. et al. (1995) Transport of phosphorothioate oligonucleotides in kidney: implications for molecular therapy. Kidney Internat. 47, 1462–1469.CrossRefGoogle Scholar
  40. 39.
    Zhao, Q., Waldschmidt, T., Fisher, E., Herrera, C. J., and Krieg, A. M. (1994) Stage-specific oligonucleotide uptake in murine bone marrow B-Cell precursors. Blood 84, 3660–3666.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Mary E. Hawkins
    • 1
  1. 1.Pediatric Oncology BranchNational Cancer InstituteBethesda

Personalised recommendations