Cell Biochemistry and Biophysics

, Volume 34, Issue 2, pp 237–256 | Cite as

Biochemical reactivity of melatonin with reactive oxygen and nitrogen species

A review of the evidence
  • Russel J. Reiter
  • Dun-xian Tan
  • Lucien C. Manchester
  • Wenbo Qi
Review Article


Melatonin (N-acetyl-5-methoxytryptamine), an endogenously produced indole found throughout the animal kingdom, was recently reported, using a variety of techniques, to be a scavenger of a number of reactive oxygen and reactive nitrogen species both in vitro and in vivo. Initially, melation was discovered to directly scavenge the high toxic hydroxyl radical (•OH). The methods used to prove the interaction of melatonin with the •OH included the generation of the radical using Fenton reagents or the ultraviolet photolysis of hydrogen peroxide (H2O2) with the use of spin-trapping agents, followed by electron spin resonance (ESR) spectroscopy, pulse radiolysis followed by ESR, and several spectrofluorometric and chemical (salicylate trapping in vivo) methodologies. One product of the reaction of melatonin with the •OH was identified as cyclic 3-hydroxymelatonin (3-OHM) using high-performance liquid chromatography with electrochemical (HPLC-EC) detection, electron ionization mass spectrometry (EIMS), proton nuclear magnetic resonance (1H NMR) and COSY 1H NMR. Cyclic 3-OHM appears in the urine of humans and other mammals and in rat urine its concentration increases when melatonin is given exogenously or after an imposed oxidative stress (exposure to ionizing radiation). Urinary cyclic 3-OHM levels are believed to be a biomarker (footprint molecule) of in vivo •OH production and its scavenging by melatonin. Although the data are less complete, besides the •OH, melatonin in cell-free systems has been shown to directly scavenge H2O2, singlet oxygen (1O2) and nitric oxide (NO•), with little or no ability to scavenge the superoxide anion radical (O2 •−). In vitro, melatonin also directly detoxifies the peroxynitrite anion (ONOO) and/or peroxynitrous acid (ONOOH), or the activated from of this molecule, ONOOH*; the product of the latter interaction is proposed to be 6-OHM. How these in vitro findings relate to the in vivo antioxidant actions of melatonin remains to be established. The ability of melatonin to scavenge the lipid peroxyl radical (LOO•) is debated. The weight of the evidence is that melatonin is probably not a classic chain-breaking antioxidant, since its ability to scavenge the LOO seems weak. Its ability to reduce lipid peroxidation may stem from its function as a preventive antioxidant (scavenging initiating radicals), or yet unidentified actions. In sum, in vitro melatonin acts as a direct free radical scavenger with the ability to detoxify both reactive oxygen and reactive nitrogen species; in vivo, it is an effective pharmacological agent in reducing oxidative damage under conditions in which excessive free radical generation is believed to be involved.

Index Entries

Melatonin free radicals antioxidant oxygen metabolism reactive oxygen species reactive nitrogen species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halliwell, B. (1994) Free radicals and antioxidants: a personal view. Nutr. Rev. 52, 253–265.PubMedCrossRefGoogle Scholar
  2. 2.
    Kehrer, J. P. (1993) Free radicals, mediators of tissue injury and disease, Crit. Rev. Toxicol. 23, 21–48.PubMedGoogle Scholar
  3. 3.
    McCord, J. M. (1998) The importance of oxidant-antioxidant balance, in Oxidative Stress, Cancer, AIDS and Neurogenerative Diseases (Montagnier, L., Oliver, R., and Pasqier C., eds.), Marcel Dekker, New York, pp. 1–7.Google Scholar
  4. 4.
    Felton, G. W. (1995) Oxidative stress of vertebrates and invertebrates, in Oxidative Stress and Antioxidative Defenses in Biology (Ahmad, S., ed.), Chapman and Hall, New York, pp. 357–434.Google Scholar
  5. 5.
    Chance, B., Sies, H., and Boveris, A. (1979) Hydroperoxide metabolism in mammalian tissues. Physiol. Rev. 59, 527–605.PubMedGoogle Scholar
  6. 6.
    Chaudiére, J. (1994) Some chemical and biochemical constraints of oxidative stress in living cells, in Free Radical Damage and Its Control (Rice-Evans, C. and Burdon, R. H., eds.), Elsevier, Amsterdam, pp. 25–66.Google Scholar
  7. 7.
    Niki, E., Oikawa, M., and Takahashi, M. (1996) Oxidative cell damage induced by radicals inhibited by antioxidants, in Free Radicals in Brain Physiology and Disorders (Packer, L., Haramatsu, M., and Yoshikawa, T., eds.), Academic, San Diego, pp. 35–44.Google Scholar
  8. 8.
    Pryor, W. A. (1986) Oxidants and antioxidants in the lung. Annu. Rev. Physiol. 48, 657–663.PubMedGoogle Scholar
  9. 9.
    Moncada, S., Palmer, R. M. J., and Higgs, E. A. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–141.PubMedGoogle Scholar
  10. 10.
    Synder, S. H., and Bredt, D. S. (1992) Biological roles of nitric oxide. Sci. Am. May, 68–77.Google Scholar
  11. 11.
    Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalynaraman, B., Barnes, S., Kirk, M., and Freeman, B. A. (1995) Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. J. Biol. Chem. 269, 26,067–26,075.Google Scholar
  12. 12.
    Rubbo, H., Darley-Usmar, V., and Freeman, B. A. (1996) Nitrite oxide regulation of tissue free radical injury. Chem. Res. Toxicol. 9, 809–820.PubMedGoogle Scholar
  13. 13.
    Moncada, S., and Higgs, A. (1993) The L-arginine-nitric oxide pathway. New Engl. J. Med. 329, 2002–2011.PubMedGoogle Scholar
  14. 14.
    Radi, R. (1996) Reactions of nitric oxide with metalloproteins. Chem. Res. Toxicol. 9, 828–835.PubMedGoogle Scholar
  15. 15.
    Brune, D., Dimmeler, S., Moline, V., and Lapetina, E. G. (1994) Nitric oxide: a signal for ADP-ribosylation of proteins. Life Sci. 54, 61–70.PubMedGoogle Scholar
  16. 16.
    Wink, D. A., Kasprzak, K. S., Maragos, C. M., Elespura, R. K., Misra, M. K., Runams, T. M., Cebula, T. A., Koch, W. H., Andrews, A. W., and Allen, T. S. (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors, Science 254, 1001–1003.PubMedGoogle Scholar
  17. 17.
    Crow, J. P., and Beckman, J. S. (1993) Reaction between nitric oxide, superoxide, and peroxynitrite: footprints of peroxynitrite in vivo. Adv. Pharmacol. 34, 17–43.Google Scholar
  18. 18.
    Radi, R., Beckman, J. S., Buch, K. M., and Freeman, B. A. (1991) Peroxynitrite oxidation of sulfhydryls. J. Biol. Chem. 266, 4244–4250.PubMedGoogle Scholar
  19. 19.
    Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A. (1990) Apparent hydroxyl radical production by peroxynitrite: implications of endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87, 1620–1624.PubMedGoogle Scholar
  20. 20.
    Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. (1991) Peroxynitrite-induced membrane lypid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288, 481–487.PubMedGoogle Scholar
  21. 21.
    de Zwart, L. L., Meerman, J. H. W., Commandeur, J. N. M. and Vermeulen, N. P. E. (1999) Biomarkers of free radical damage. Applications in experimental animals and in humans. Free Radical Biol. Med. 26, 202–206.Google Scholar
  22. 22.
    Pryor, W. A., and Squadrito, G. L. (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268, L699-L722.PubMedGoogle Scholar
  23. 23.
    Sies, H. (1993) Strategies of antioxidative defense. Eur. J. Biochem. 215, 213–219.PubMedGoogle Scholar
  24. 24.
    Sies, H. (Ed.) (1997) Antioxidants in Disease Mechanisms and Therapy, Academic Press, San Diego, pp. 707.Google Scholar
  25. 25.
    Reiter, R. J. (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocrine Rev. 12, 151–180.Google Scholar
  26. 26.
    Yu, H. S., Yee, R. W., Howes, K. A., and Reiter, R. J. (1990) Diurnal rhythms of immunoreactive melatonin in aqueous humor and serum of male pigmented rabbits. Neurosci Lett. 116, 309–314.PubMedGoogle Scholar
  27. 27.
    Huether, G. (1993) The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates. Experimentia 49, 665–670.Google Scholar
  28. 28.
    Abe, M., Itoh, M. T., Mijata, M., Ishikawa S., and Sumi, Y. (1999) Detection of melatonin, its precursors and related enzyme activities in rabbit lens. Exp. Eye Res. 68, 255–262.PubMedGoogle Scholar
  29. 29.
    Conti, A., Conconi, S., Hertens, E., Skwarlo-Sonta, K., Markowska, M., and Maestroni, G. J. M. (2000) Melatonin synthesis in mouse and human bone marrow cells. J. Pineal Res., 28, 193–202.PubMedGoogle Scholar
  30. 30.
    Tan, D. X., Manchester, L. C., Reiter, R. L., Qi, W., Zhang, M., Weintraub, S., Cabrera, J., Sainz, R. M., and Mayo, J. C. (1999) Identification of highly elevated levels of melatonin in bone marrow: its origin and significance. Biochim. Biophys. Acta, 1472, 206–214.PubMedGoogle Scholar
  31. 31.
    Tan, D. X., Manchester, L. C., Reiter, R. J., Qi, W., Hanes, W. A., and Farley, N. J. (1999) High physiological levels of melatonin in the bile of mammals. Life Sci., 65, 2523–2529.PubMedGoogle Scholar
  32. 32.
    Skinner, D. C., and Malpaux, B. (1999) High melatonin concentrations in the third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology 140, 4399–4405.PubMedGoogle Scholar
  33. 33.
    Menendez-Pelaez, A., Poeggeler, B., Reiter, R. J., Barlow-Walden, L. R., Pablos, M. I., and Tan, D. X. (1992) Nuclear localization of melatonin in different mammalian tissues: immunocyto-chemical and radioimmunoassay evidence. J. Cell. Biochem. 53, 373–382.Google Scholar
  34. 34.
    Manev, H., Uz, T., Kharlamov, A., and Joo, J. Y. (1996) Increased brain damage after stroke and excitotoxic seizures in melatonin-deficient rats. FASEB J. 10, 1546–1551.PubMedGoogle Scholar
  35. 35.
    Kilic, E., Özdemir, Y. G., Bolay, H., Kelestimur, H., and Dalkara, T. (1999) Pinealectomy aggravates and melatonin administration attenuates brain damage in focal ischemia. J. Cerebr. Blood Flow Metab. 19, 511–516.Google Scholar
  36. 36.
    Menendez-Pelaez, A., and Reiter, R. J. (1993) Distribution of melatonin in mammlian tissues: the relative importance of nuclear versus cytosolic localization. J. Pineal Res. 15, 59–60.PubMedGoogle Scholar
  37. 37.
    Finnochiarro, L. M. E., and Glikin, G. C. (1998) Intracellular distribution of melatonin in cultured cell lines. J. Pineal Res. 24, 22–34.Google Scholar
  38. 38.
    Okatani, Y., Okamoto, K., Hayashi, K., Wakatsuki, A., Tamura, S. and Sagara, Y. (1998) Maternal-fetal transfer of melatonin in pregnant women near term. J. Pineal Res. 25, 129–134.PubMedGoogle Scholar
  39. 39.
    Walkatsuki, A., Okatani, Y., Izumiya, C., and Ikenoue, N. (1999) Melatonin protects against ischemia and reperfusion-induced oxidative lipid and DNA damage in fetal rat brain. J. Pineal Res. 26, 147–152.Google Scholar
  40. 40.
    Pardridge, W. M., and Mietus, L. J. (1980) Transport of albumin bound melatonin through the blood-brain barrier. J. Neurochem. 34, 1761–1763.PubMedGoogle Scholar
  41. 41.
    Vakkuri, O., Leppäluoto, J., and Kauppila A. (1985) Oral administration and distribution of melatonin in human serum, saliva and urine. Life Sci. 37, 489–495.PubMedGoogle Scholar
  42. 42.
    Lee, B. J., and Min, G. H. (1996) Oral controlled release of melatonin using polymer-reinforced and coated alginate beads. Int. J. Pharm. 144, 37–46.Google Scholar
  43. 43.
    Yeleswaran, K., McLaughlin, L. G., Knipe, J. O., and Schabdach, D. (1997) Pharmacokinetics and oral bioavailability of exogenous melatonin in preclinical animal models and clinical implications. J. Pineal Res. 22, 45–51.Google Scholar
  44. 44.
    Lee, B. J., Parrott, K. A., Ayres, J. W., and Sack, R. L. (1994) Preliminary evaluation of transdermal delivery of melatonin in human subjects. Res. Commun. Mol. Pathol. Pharmacol. 85, 337–344.PubMedGoogle Scholar
  45. 45.
    Vollrath, L., Semm, P., and Gamal, G. (1998) Sleep induction by intranasal application of melatonin, in Melatonin: Current Status and Perspectives (Birau, W., Schlott, W., eds.) Pergamon, Oxford, pp. 327–329.Google Scholar
  46. 46.
    Bechgaard, E., Lindhardt, K., and Martinsen, L. (1999) Routes of melatonin administration. Int. J. Pharmaceut. 182, 1–6.Google Scholar
  47. 47.
    Mallo, C., Zaidan, R., Galy, G., Vermeulen, E., Brun, J., Chazot, G., and Claustrat, B. (1990) Pharmacokinetics of melatonin in man after intravenous infusion and bolus injection. Eur. J. Clin. Pharmacol. 38, 297–301.PubMedGoogle Scholar
  48. 48.
    Neville, S., Arendt, J., and Ioannides, C. (1989) A study of the mutagenicity of melatonin and 6-hydroxymelatonin. J. Pineal Res. 6, 73–76.PubMedGoogle Scholar
  49. 49.
    Arendt, J. (1997) Safety of melatonin in long term use. J. Biol. CRythms 12, 673–688.Google Scholar
  50. 50.
    Avery, D., Lenz, M., and Landis, C. (1998) Guidelines for prescribing melatonin. Ann. Med. 30, 122–130.PubMedGoogle Scholar
  51. 51.
    Geoffriau, M., Brun, J., Chazot, G., and Claustrat, B. (1998) The physiology and pharmacology of melatonin in humans. Horm. Res. 49, 136–141.PubMedGoogle Scholar
  52. 52.
    Gibb, J. W., Bush, L., and Hanson, G. R. (1997) Exacerbation of methamphetamine-induced neurochemical deficits by melatonin. J. Pharmacol. Exp. Ther. 283, 630–635.PubMedGoogle Scholar
  53. 53.
    Coggins, C. and Sloan, N. L. (1998) Pro-convulsant effects of oral melatonin in neurologically disabled children. Lancet 351, 1254–1255.Google Scholar
  54. 54.
    Yeleswaran, K., Vachharajani, N., and Santone, K. (1999) Involvement of cytochrome P-450 isozymes in melatonin metabolism and clinical implications. J. Pineal Res. 26, 190–191.Google Scholar
  55. 55.
    Benot, S., Molinero, P., Soutto, M., Goberna, R., and Guerrero, J. M. (1998) Circadian variations in the rat serum total antio xidant status: correlation with melatonin levels. J. Pineal Res. 25, 1–4.PubMedGoogle Scholar
  56. 56.
    Benot, S., Goberna, R., Reiter, R. J., Garcia-Maurino, S., Osuna, C., and Guerrero, J. M. (1991) Physiological levels of melatonin contribute to the antioxidant capacity of human serum. J. Pineal Res. 27, 59–64.Google Scholar
  57. 57.
    Reiter, R. J. (1991) Melatonin: the chemical expression of darkness. Mol. Cell. Endocrinol. 79, C153-C158.PubMedGoogle Scholar
  58. 58.
    Hardeland, R., Balzer, I., Poeggeler, B., Fuhrberg, B., Uria, H., Behrmann, G., Wolf, R., Meyer, T. J., and Reiter, R. J. (1995) On the primary functions of melatonin in evolution: mediation of photoperiodic signals in a uni-cell, photooxidation and scavenging of free radicals. J. Pineal Res. 18, 104–111.PubMedGoogle Scholar
  59. 59.
    Hardeland, R. (1997) New actions of melatonin and their relevance to biometeorology. Int. J. Biometeorol. 41, 47–57.PubMedGoogle Scholar
  60. 60.
    Reiter, R. J., Melchiorri, D., Sewerynek, E., Poeggeler, B., Barlow-Walden, L. R., Chuang, S. H., Ortiz, G. G., and Acuña-Castroviejo, D. (1995) A review of the evidence supporting melatonin's role as an antioxidant. J. Pineal Res. 18, 1–11.PubMedGoogle Scholar
  61. 61.
    Reiter, R. J., Oh, C. S., and Fujimori, O. (1996) Melatonin: its intracellular and genomic actions. Trends Endocrinol. Metab. 7, 22–27.PubMedGoogle Scholar
  62. 62.
    Poeggeler, B. (1998) Melatonin: radical detoxification by electron donation, in Reactive Oxygen Species in Biological Systems (Gilbert, D. L., and Colton, C. D., eds.), Plenum, New York, pp. 421–451.Google Scholar
  63. 63.
    Tan, D. X., Chen, L. D., Poeggeler, B., Manchester, L. C., and Reiter, R. J. (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocrine J. 1, 57–60.Google Scholar
  64. 64.
    Reiter, R. J. (1980) The pineal and its hormones in the control of reproduction in mammals. Endocr. Rev. 1, 109–131.PubMedGoogle Scholar
  65. 65.
    Reiter, R. J. (1991) Melatonin: that ubiquitously acting pineal hormone. News Physiol. Sci. 6, 223–227.Google Scholar
  66. 66.
    Finkelstein, E., Rosen, G. M., and Rauckman, E. J. (1980) Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals by nitrones. J. Am. Chem. Soc. 102, 4994–4999.Google Scholar
  67. 67.
    Pritsos, C. A., Constantinides, D. P., Trilton, T. R., Heimbrook, D. C., and Satorelli, A. C. (1985) Use of high-performance liquid chromatography to detect hydroxyl and superoxide radicals generated from mitomycin C. Anal. Biochem. 150, 294–299.PubMedGoogle Scholar
  68. 68.
    Towell, J. and Kalyanaraman, B. (1991) Detection of radical adducts of 5,5-dimethyl-1-pyrroline N-oxide by the combined use of high performance liquid chromatography and electrochemical detection and electron spin resonance. Anal. Biochem. 196, 111–119.PubMedGoogle Scholar
  69. 69.
    Poeggeler, B., Saarela, S., Reiter, R. J., Tan, D. X., Chen, L. D., Manchester, L. C., and Barlow-Walden, L. R. (1994) Melatonin—a highly potent endogenous radical scavenger and electron donor: new aspects of oxidation chemistry of this indole assessed in vitro. Ann. N.Y. Acad. Sci. 738, 419–420.PubMedCrossRefGoogle Scholar
  70. 70.
    Poeggeler, B., Reiter, R. J., Hardeland, R., Tan, D. X., and Barlow-Walden, L. R. (1996) Melatonin and structurally related endogenous indoles act as potent electron donors and radical scavengers in vitro. Redox Rep. 2, 179–184.Google Scholar
  71. 71.
    Poeggeler, B., Reiter, R. J., Hardeland, R., Sewerynek, E., Melchiorri, D., and Barlow-Walden, L. R. (1995) Melatonin, a mediator of electron transfer and repair reactions, acts synergistically with the chain-breaking antioxidants ascorbate, trolox and glutathione. Neuroendocrinol. Lett. 17, 87–92.Google Scholar
  72. 72.
    Matuszek, Z., Reszka, K. J., and Chignell, C. F. (1997) Reaction of melatonin and related indoles with hydroxyl radicals: ESR and spin trapping investigations. Free Radical Biol. Med. 23, 367–372.Google Scholar
  73. 73.
    Susa, N., Ueno, S., Furukawa, Y., Ueda, J., and Sugiyama, M. (1997) Potent protective effect of melatonin on chromium (VI)-induced DNA single-strand breaks, cytotoxicity, and lipid peroxidation in primary cultures of rat hepatocytes. Toxicol. Appl. Pharmacol. 144, 377–384.PubMedGoogle Scholar
  74. 74.
    Brömme, H. J., Ebelt, H., Peschke, D., and Peschke, E. (1999) Alloxan acts as a prooxidant only under reducing conditions: influence of melatonin. Cell. Mol. Life Sci. 55, 487–493.PubMedGoogle Scholar
  75. 75.
    Stasica, P., Ulanski, P., and Rosiak, J. M. (1998) Melatonin as a hydroxyl radical scavenger. J. Pineal Res. 25: 65–66.PubMedGoogle Scholar
  76. 76.
    Stasica, P., Ulanski, P., and Rosiak, J. M. (1998) Reaction of melatonin with radicals in deoxy-genated aqueous solutions. J. Radioanal. Nucl. Chem. 232, 107–113.Google Scholar
  77. 77.
    Roberts, J. E., Hu, D. N., and Wishart, J. F. (1998) Pulse radiolysis studies of melatonin and chloromelatonin. J. Photochem. Photobiol. B:Biol. 42, 125–132.Google Scholar
  78. 78.
    Mahal, H. S., Sharma, H. S., and Mukherjee, T. (1998) Antioxidant properties of melatonin: a pulse radiolysis study. Free Radical Biol. Med. 26, 557–565.Google Scholar
  79. 79.
    Pähkla, R., Zilmer, M., Kullisar, T., and Rägo, L. (1998) Comparison of the antioxidant activity of melatonin and pinoline in vitro. J. Pincal Res. 24, 96–101.Google Scholar
  80. 80.
    Barreto, J. C., Smith, G. S., Strobel, N. H. P., McQuillin, P. A., and Miller, T. A. (1995) Terephthalic acid: a dosimeter for the production of free radicals in vitro. Life Sci. 56, PL89-PL96.PubMedGoogle Scholar
  81. 81.
    Li, X. J., Zhang, L. M., Gu, J., Zhang, A. Z., and Sun, F. Y. (1997) Melatonin decreases production of hydroxyl radical during ischemia-reperfusion. Acta Pharmacol. Sinica 18, 394–396.Google Scholar
  82. 82.
    Tan, D. X., Manchester, L. C., Reiter, R. J., Plummer, B. F., Hardies, L. J., Weintraub, S., Vijayalaxmi, and Shepherd, A. M. M. (1998) A novel melatonin metabolite, cyclic 3-hydroxy-melatonin: a biomarker of in vivo hydroxyl radical generation. Biochem. Biophys. Res. Commun. 253, 614–620.PubMedGoogle Scholar
  83. 83.
    Okada, S., Nakamura, N., and Sasaki, K. (1983) Radioprotection of intracellular genetic material, in Radioprotectors and Anticarcinogens (Nygaard, O. F. and Sinic, M. G., eds.), Academic San Diego, pp. 339–356.Google Scholar
  84. 84.
    Hardeland, R., Reiter, R. J., Poeggeler, B., and Tan, D. X. (1993) The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci. Biobehav. Rev. 17, 347–357.PubMedGoogle Scholar
  85. 85.
    Reiter, R. J., Tan, D. X., Poeggeler, B., Chen, L. D., and Menendez-Pelaez, A. (1994) Melatonin as a free radical scavenger: implications for aging and age-related diseases. Ann. NY Acad. Sci. 719, 1–12.PubMedGoogle Scholar
  86. 86a.
    Tan, D. X., Manchester, L. C., Reiter, R. J., et al. (2000) Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radical Biol. Med. 29, 1177–1185.Google Scholar
  87. 86.
    Zang, L. Y., Cosma, G., Gardner, H., and Vallyathan, V. (1998) Scavenging of reactive oxygen species by melatonin. Biochim. Biophys. Acta 1425, 469–477.PubMedGoogle Scholar
  88. 87.
    McCord, J. M. and Fridovich, J. (1969) Superoxide dismutase. An enzyme function for erythrocuprein (hemocruprein). J. Biol. Chem. 244, 6049–6055.PubMedGoogle Scholar
  89. 88.
    Marshall, K. A., Reiter, R. J., Poeggeler, B., Aruoma, O. I., and Halliwell, B. (1996) Evaluation of the antioxidant activity of melatonin in vitro. Free Radical Biol. Med. 21, 307–315.Google Scholar
  90. 89.
    Sies, H. (ed.) (1991), Oxidative Stress: Oxidants and Antioxidants, Academic, New York, pp. 426.Google Scholar
  91. 90.
    Konofsky, J. R. and Sima, P. D. (1993) Singlet-oxygen generation at gas-liquid interfaces: a significant artifact in the measurement of singlet-oxygen fields from ozone-biomolecular reactions. Photochem. Photobiol. 58, 335–340.Google Scholar
  92. 91.
    DiMascio, P., Bachara, E. J. H., Medeiros, M. H. G., Brivida, K., and Sies, H. (1994) Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide. FEBS Lett. 355, 287–289.Google Scholar
  93. 92.
    Wefers, H. (1987) Singlet oxygen in biological systems. Bioelectrochem. Bioenerg. 18, 91–104.Google Scholar
  94. 93.
    Poeggeler, B., Reiter, R. J., Tan, D. X., Chen, L. D., and Manchester, L. C. (1993) Melatonin, hydroxyl radical mediated oxidative damage, and aging. J. Pineal Res. 14, 151–158.PubMedGoogle Scholar
  95. 94.
    Cagnoli, C. M., Atabay, C., Kharlamova, E., and Manev, E. (1995) Melatonin protects neurons from singlet oxygen induced apoptosis. J. Pineal Res. 18, 222–226.PubMedGoogle Scholar
  96. 95.
    Reszka, K. J., Matuszak, Z., Bilski, P., Martinez, L. J., and Chignell, C. F. (1996) Scavenging actions of melatonin. Abstr. 18 th Ann. Mtg BEMS, p. 176.Google Scholar
  97. 96.
    Zang, L. Y., van Kuijk, F. J., Misra, B. R., and Misha, H. P. (1995) The specificity and product of quenching singlet oxygen by 2,2,6,6-tetramethylpiperidine. Biochem. Mol. Biol. Int. 37, 283–293.PubMedGoogle Scholar
  98. 97.
    King, M. and Scaiano, J. C. (1998) The excited states of melatonin. Photochem. Photobiol. 65, 538–542.Google Scholar
  99. 98.
    Weiss, S. J. (1989) New Engl. J. Med. 320, 365–376.PubMedCrossRefGoogle Scholar
  100. 99.
    Kettle, A. J. (1996) Neutrophils convert tyrosyl residues in albumin to chlorotyrosine. FEBS Lett. 379, 103–106.PubMedGoogle Scholar
  101. 100.
    Dellegar, S. M., Murphy, S. A., Baurne, A. E., DiCesare, J. C., and Rurser, G. H. (1999) Identification of the factors affecting the rate of deactivation of hypochlorous acid by melatonin. Biochem. Biophys. Res. Commun. 257, 431–439.PubMedGoogle Scholar
  102. 101.
    Noda, Y., Mori, A., Liburdy, R., and Packer, L. (1999) Melatonin and its precursors scavenge nitric oxide. J. Pincal Res. 27, 159–163.Google Scholar
  103. 102.
    Beckman, J. S., Chen, J., Ischiropoulos, H., and Crow, J. P. (1994) Oxidative chemistry of peroxynitrite. Methods Enzymol. 233, 229–240.PubMedCrossRefGoogle Scholar
  104. 103.
    Gilad, E., Cuzzocrea, S., Zingarelli, B., Salzman, A. L., and Szabo, C. (1997) Melatonin as a scavenger of peroxynitrite. Life Sci. 60, PL169-PL174.PubMedGoogle Scholar
  105. 104.
    Cuzzocrea, S., Zingarelli, B., Gilab, E., Hake, P., Salzman, A. L., and Szabo, C. (1997) Protective effect of melatonin in carrageenan-induced models of local inflammation. J. Pineal Res. 23, 106–116.PubMedGoogle Scholar
  106. 105.
    Cuzzocrea, S., Zingarelli, B., Costantino, G., and Caputi, A. P. (1998) Protective effect of melatonin in a non-septic shock model induced by zymosan in the rat. J. Pineal Res. 25, 24–33.PubMedGoogle Scholar
  107. 106.
    El-Sokkary, G. H., Reiter, R. J., Cuzzocrea, S., Caputi, A. P., Hassanein, A. M. M., and Tan, D. X. (1999) Role of melatonin in reduction of lipid peroxidation and peroxynitrite formation in non-septic shock induced by zymosan. Shock 12, 402–408.PubMedGoogle Scholar
  108. 107.
    Zhang, H., Squadrito, G. L., and Pryor, W. A. (1998) The reaction of melatonin with peroxynitrite: formation of melatonin radical cation and absence of stable nitrated products. Biochem. Biophys. Res. Commun. 251, 83–87.PubMedGoogle Scholar
  109. 108.
    Zhang, H., Squadrito, G. L., Uppi, R., and Pryor, W. A. (1999) Reaction of peroxynitrite with melatonin: a mechanistic study. Chem. Res. Toxicol. 12, 526–534.PubMedGoogle Scholar
  110. 109.
    Cheeseman, K. H. (1993) Tissue injury by free radicals. Toxicol. Indust. Health 9, 39–51.Google Scholar
  111. 110.
    Sies, H. and Stahl, W. (1995) Vitamins C and E,β-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr. 62(Suppl.), 1315S-1321S.PubMedGoogle Scholar
  112. 111.
    Reiter, R. J. (1998) Oxidative damage in the central nervous system: protection by melatonin. Prog. Neurobiol. 56, 359–384.PubMedGoogle Scholar
  113. 112.
    Pieri, C., Marra, M., Moroni, F., Recchioni, R., and Marcheselli, F. (1994) Melatonin, a peroxyl radical scavenger more effective than vitamin E. Life Sci. 55, PL271-PL276.PubMedGoogle Scholar
  114. 113.
    Pieri, C., Moroni, F., Marra, M., and Marcheselli, F., and Recchioni, R. (1995) Melatonin is an efficient antioxidant. E. Arch. Gerontol. Geriatrics 20, 159–165.Google Scholar
  115. 114.
    Scaiano, J. C. (1995) Exploratory laser flash photolysis study of free radical reactions and magnetic field effects in melatonin chemistry. J. Pineal Res. 19, 189–195.PubMedGoogle Scholar
  116. 115.
    Escames, G., Guerrero, J. M., Reiter, R. J., Garcia, J. J., Muñoz-Hoyos, A., Ortiz, G. G., and Oh, C. S. (1997) Melatonin and vitamin E limit nitric oxide-induced lipid peroxidation in rat brain homogenates. Neurosci. Lett. 230, 147–150.PubMedGoogle Scholar
  117. 116.
    Livera, M. A., Tesoriere, L., D'Arpa, D., and Morreale, M. (1997) Reaction of melatonin with lipoperoxyl radicals in phospholipid bilayers. Free Radical Biol. Med. 23, 708–711.Google Scholar
  118. 117.
    Longoni, B., Salgo, M. G., Pryor, W. A., and Marchiafava, P. L. (1998) Effects of melatonin on lipid peroxidation induced by oxygen radicals. Life Sci. 62, 853–859.PubMedGoogle Scholar
  119. 118.
    Antunes, F., Barclay, L. R. C., Ingold, K. U., King, M., Norris, J. O., Scaiano, J. C., and Xi, F. (1999) On the antioxidant activity of melatonin. Free Radical Biol. Med. 26, 117–128.Google Scholar
  120. 119.
    Wayner, D. D. M., and Burton, G. W. (1989) Scavenging of peroxyl radicals, in Handbook of Free Radicals and Antioxidants in Biomedicine, Vol. III (Schwartz, G. D., ed.), CRC Press, Boca Raton, pp. 223–232.Google Scholar
  121. 120.
    Tan, D. X., Poeggeler, B., Reiter, R. J., Chen, L. D., Chen, S., Manchester, L. C., and Barlow-Walden, L. R. (1993) The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole. Cancer Lett. 70, 65–71.PubMedGoogle Scholar
  122. 121.
    Reiter, R. J., Tang, L., Garcia, J. J., and Muñoz-Hoyos, A. (1997) Pharmacological actions of melatonin in free radical pathophysiology. Life Sci. 60, 2255–2271.PubMedGoogle Scholar
  123. 122.
    Romero, M. P., Osuna, C., Garcia-Pergañeda, A., Carrillo-Vico, A., and Guerrero, J. M. (1999) The pineal secretory product melatonin reduces hydrogen peroxide-induced DNA damage in U-937 cells. J. Pineal Res. 26, 227–235.PubMedGoogle Scholar
  124. 123.
    Tesoriere, L., D'Arpa, D., Conti, S., Giaccone, V., Pintoudi, A. M., and Livrea, M. A. (1999) Melatonin protects human red blood cells from oxidative hemolysis: new insights into the radical-scavenging activity. J. Pineal Res. 27, 95–105.PubMedGoogle Scholar
  125. 124.
    Reiter, R. J., Carneiro, R. C., and Oh, C. S. (1997) Melatonin in relation to cellular antioxidative defense mechanisms. Horm. Metab. Res. 29, 363–372.PubMedCrossRefGoogle Scholar
  126. 125.
    Morishima, I., Okumura, K., Mataui, H., Keneko, S., Mumaguchi, Y., Kawakami, K., Makuno, S., Hayakawa, M., Toki, Y., Ito, T., and Hayakawa, T. (1999) Zinc accumulation in adriamycin-induced cardiomyopathy in rats: effects of melatonin, a cardiovascular protectants. J. Pineal Res. 26, 204–210.PubMedGoogle Scholar
  127. 126.
    de la Lastra, C. A., Motilva, V., Martin, M. J., Nieto, A., Barranco, M. D., Cabeza, J., and Herrerias, M. (1999) Protective effect of melatonin on endomethacin-induced gastric injury in rats. J. Pineal Res. 26, 101–107.Google Scholar
  128. 127.
    Garcia, J. J., Reiter, R. J., Ortiz, G. G., Oh, C. S., Tang, L., Yu, B. P., and Escames, G. (1998) Melatonin enhances tamoxifen's ability to prevent the reduction in microsomal membrane fluidity induced by lipid peroxidation. J. Membr. Biol. 162, 59–65.PubMedGoogle Scholar
  129. 128.
    Reiter, R. J., Tan, D. X., Kim, S. J., Manchester, L. C., Qi, W., Garcia, J. J., Cabrera, J. C., El-Sokkary, G., and Rouvier-Garay, V. (1999) Augmentation of indices of oxidative damage in life-long melatonin-deficient rats. Mech. Aging Rev. 110, 157–173.Google Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Russel J. Reiter
    • 1
  • Dun-xian Tan
    • 1
  • Lucien C. Manchester
    • 1
  • Wenbo Qi
    • 1
  1. 1.Department of Cellular and Structural BiologyThe University of Texas Health Science CenterSan Antonio

Personalised recommendations