Cell Biochemistry and Biophysics

, Volume 34, Issue 2, pp 191–208 | Cite as

Structure of the vacuolar adenosine triphosphatases

  • Stephan Wilkens
Original Article


Vacuolar adenosine triphosphatases (V-ATPases) represent an important class of proton pumps found in endomembrane systems of eucaryotic cells, where they are involved in pH regulation. Progress has been made in the structure determination of this large, membrane-bound multisubunit enzyme complex. Electron microscopy of the V-ATPase has revealed a ball-and-stalk-like structure similar to F1F0-type ATP synthase, to which the V-ATPase is evolutionary related. Aside from the overall structural similarity of the V-ATPase and F-ATP synthase, a number of distinct structural differences exist between the two related enzymes, giving clues to their different function and regulation in the organism.

Index Entries

Vacuolar ATPase protein structure electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stevens, T. H., and Forgac, M. (1997) Structure, function and regulation of the vacuolar (H+)-ATPase. Annu. Rev. Cell. Dev. Biol. 13, 779–808.PubMedGoogle Scholar
  2. 2.
    Finbow, M. E., and Harrison, M. A. (1997) The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem. J. 324, 697–712.PubMedGoogle Scholar
  3. 3.
    Nelson, N., and Harvey, W. R. (1999) Vacuolar and plasma membrane V-ATPases. Physiol. Rev. 79, 361–385.PubMedGoogle Scholar
  4. 4.
    Kakinuma, Y., Yamato, I., and Murata, T. (1999) Structure and function of vacuolar Na+-translocating ATPase in Enterococcus hirae. J. Bioenerg. Biomembr. 32, 7–14.Google Scholar
  5. 5.
    Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1988) Molecular cloning of the β-subunit of a possible non-F0F1 type ATPsynthase from the acidothermophilic archaebacterium, Sulfolobus acidocaldarius. J. Biol. Chem. 263, 17,251–17,254.Google Scholar
  6. 6.
    Boyer, P. D. (1997) The ATP synthase—a splendid molecular machine. Ann. Rev. Biochem. 66, 717–749.PubMedGoogle Scholar
  7. 7.
    Senior, A. E. (1988) ATP synthesis by oxidative phosphorylation. Physiol. Rev. 68, 177–231.PubMedGoogle Scholar
  8. 8.
    Hirata, T., Nakamura, N., Omote, H., Wada, Y., and Futai, M. (2000) Regulation and reversibility of vacuolar H+-ATPase. J. Biol. Chem. 275, 386–389.PubMedGoogle Scholar
  9. 9.
    Xie, X.-S. and Stone, D. K. (1986) Isolation and reconstitution of the clathrin-coated vesicle proton translocating complex. J. Biol. Chem. 261, 2492–2495.PubMedGoogle Scholar
  10. 10.
    Arai, H., Berne, M., Terres, G., Terres, H., Puopolo, K., and Forgac, M. (1987) Subunit composition and ATP site labeling of the coated vesicle proton-translocating adenosinetriphosphatatse. Biochemistry 26, 6632–6638.PubMedGoogle Scholar
  11. 11.
    Graham, L. A., Powell, B., and Stevens, T. H. (2000) Composition and assembly of the yeast vacuolar H+-ATPase complex. J. Exp. Biol. 203, 61–70.PubMedGoogle Scholar
  12. 12.
    Arai, H., Terres, G., Pink, S., and Forgac, M. (1988) Topography and subunit stoichiometry of the coated vesicle proton pump. J. Biol. Chem. 263, 8796–8802.PubMedGoogle Scholar
  13. 13.
    Xu, T., Vasilyeva, E., and Forgac, M. (1999) Subunit interactions in the clathrin-coated vesicle vacuolar (H+)-ATPase complex. J. Biol. Chem. 274, 28,909–28,915.Google Scholar
  14. 14.
    Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H., and Taiz, L. (1988) The cDNA sequence of the 69-kDa subunit of the carrot vacuolar H+-ATPase. Homology to the β-chain of F0F1-ATPases. J. Biol. Chem. 263, 9102–9112.PubMedGoogle Scholar
  15. 15.
    Bowman, E. J., Tenney, K., and Bowman, B. J. (1988) Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-1 encoding the 67-kDa subunit reveals homology to other ATPases. J. Biol. Chem. 263, 13,994–14,001.Google Scholar
  16. 16.
    Hirata, R., Ohsumi, Y., Nakano, A., Kawasaki, H., Suzuki, K., and Anraku, Y. (1990) Molecular structure of a gene, VMA1, encoding the catalytic subunit of H+ translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem. 265, 6726–6733.PubMedGoogle Scholar
  17. 17.
    Puopolo, K., Kumamoto, C., Adachi, I., Magner, R., and Forgac, M. (1992) Differential expression of the “B” subunit of the vacuolar H(+)-ATPase in bovine tissues. J. Biol. Chem. 267, 3696–3706.PubMedGoogle Scholar
  18. 18.
    Zhang, J., Vasilyeva, E., Feng, Y., and Forgac, M. (1995) Inhibition and labeling of the co vesicle V-ATPase by 2-azido-[32P]ATP. J. Biol. Chem. 270, 15,494–15,500.Google Scholar
  19. 19.
    Vasilyeva, E., and Forgac, M. (1996) 3′-O-(4-Benzoyl)benzoyladenosine 5′-triphosphate inhibits activity of the vacuolar (H+)-ATPase from bovine brain clathrin-coated vesicles by modification of a rapidly exchangeable, non-catalytic nucleotide binding site on the B subunit. J. Biol. Chem. 271, 12,775–12,782.Google Scholar
  20. 20.
    Forgac, M. (1999) Structure and properties of the clathrin-coated vesicle and yeast vacuolar V-ATPases, J. Bioenerg. Biomembr. 31, 57–65.PubMedGoogle Scholar
  21. 21.
    Forgac, M. (2000) Structure, mechanism and regulation of the clathrin-coated and yeast vacuolar H+-ATPases. J. Exp. Biol. 203, 71–80.PubMedGoogle Scholar
  22. 22.
    Weber, J., Senior, A. E. (1997) Catalytic mechanism of F1-ATPase. Biochem. Biophys Acta 1319, 19–58.PubMedGoogle Scholar
  23. 23.
    Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628.PubMedGoogle Scholar
  24. 24.
    Liu, Q., Leng, X.-H., Newman, P. R., Vasilveva, E., Kane, P. M., and Forgac, M. (1997) Site-directed mutagenesis of the yeast V-ATPase A subunit. J. Biol. Chem. 272, 11,750–11,756.Google Scholar
  25. 25.
    Liu, Q., Kane, P. M., Newman, P. R., and Forgac, M. (1996) Site-directed mutagenesis of the yeast V-ATPase B subunit (Vma2p). J. Biol. Chem. 269, 31,592–31,597.Google Scholar
  26. 26.
    MacLeod, K. J., Vasilyeva, E., Baleja, J. D., and Forgac, M. (1998) Mutational analysis of the nucleotide binding sites of the yeast V-ATPase. J. Biol. Chem. 273, 150–156.PubMedGoogle Scholar
  27. 27.
    Feng, Y. and Forgac, M. (1994) Inhibition of vacuolar H(+)-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A. J. Biol. Chem. 269, 13,224–13,230.Google Scholar
  28. 28.
    Nogi, T., Fukami, T. A., Ishida, M., Yoshida, M., and Miki, K. (1999) Purification, crystallization, and preliminary X-ray crystallographic analysis of Thermus thermophilus V1-ATPase B subunit. J. Struct. Biol. 127, 79–82.PubMedGoogle Scholar
  29. 29.
    Ho, M. N., Hill, K. J., Lindorfer, M. A., and Stevens, T. H. (1993b) Isolation of vacuolar membrane H+-ATPase deficient yeast mutants; the VMA5 and VMA4 genes are essential for assembly and activity of the vacuolar H+-ATPase. J. Biol. Chem. 268, 221–227.PubMedGoogle Scholar
  30. 30.
    Doherty, R. D., and Kane, P. M. (1993) Partial assembly of the yeast vacuolar H(+)-ATPase in mutants lacking one subunit of the enzyme. J. Biol. Chem. 268, 16,845–16,851.Google Scholar
  31. 31.
    Puopolo, K., Sczekan, M., Magner, R., and Forgac, M. (1992) The 40-kDa subunit enhances but is not required for activity of the coated vesicle proton pump. J. Biol. Chem. 267, 5171–5176.PubMedGoogle Scholar
  32. 32.
    Kane, P. M., and Parra, K. J. (2000) Assembly and regulation of the yeast vacuolar H+-ATPase. J. Exp. Biol. 203, 81–87.PubMedGoogle Scholar
  33. 33.
    Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) The H subunit (Vma13p) of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1 complexes. J. Biol. Chem. 275, 21,761–21,767.Google Scholar
  34. 34.
    Gräf, R., Harvey, W. R., and Wieczorek, H. (1996) Purification and properties of a cytosolic V1-ATPase. J. Biol. Chem. 271, 20,908–20,913.Google Scholar
  35. 35.
    Nelson, H., Mandiyan, S., and Nelson, N. (1995) A bovine cDNA and a yeast gene (VMA8) encoding the subunit D of the vacuolar H(+)-ATPase. Proc. Natl. Acad. Sci. USA 92, 497–501.PubMedGoogle Scholar
  36. 36.
    Bowman, E. J., Steinhardt, A., and Bowman, B. J. (1995) Isolation of the vma-4 gene encoding the 26 kDa subunit of the Neurospora crassa vacuolar ATPase. Biochim. Biophys. Acta 1237, 95–98.PubMedGoogle Scholar
  37. 37.
    Graham, L. A., Hill, K. J., and Stevens, T. H. (1995) VMA8 encodes a 32-kDa V1 subunit of the Saccharomyces cerevisiae vacuolar H(+)-ATPase required for function and assembly of the enzyme complex. J. Biol. Chem. 270, 15,037–15,044.Google Scholar
  38. 38.
    Nelson, H., Mandiyan, S., and Nelson, N. (1994) The Saccharomyces cerevisiae VMA7 gene encodes a 14-kDa subunit of the vacuolar H(+)-ATPase catalytic sector. J. Biol. Chem. 269, 24,150–24,155.Google Scholar
  39. 39.
    Graham, L. A., Hill, K. J., and Stevens, T. H. (1994) VMA7 encodes a novel 14-kDa subunit of the Saccharomyces cerevisiae vacuolar H(+)-ATPase complex. J. Biol. Chem. 269, 25,974–25,977.Google Scholar
  40. 40.
    Supekova, L., Supek, F., Ma, Y., and Nelson, N. (1995) The Saccharomyces cerevisiae VMA10 is an intron-containing gene encoding a novel 13-kDa subunit of vacuolar H(+)-ATPase. J. Biol. Chem. 270, 13,726–13,732.Google Scholar
  41. 41.
    Supekova, L., Sbia, M., Supek, F., Ma, Y., and Nelson, N. (1996) A novel subunit of vacuolar H(+)-ATPase related to the b subunit of F-ATPases. J. Exp. Biol. 199, 1147–1156.PubMedGoogle Scholar
  42. 42.
    Tomashek, J. J., Graham, L. A., Hutchins, M. U., Stevens, T. H., and Klionsky, D. J. (1997) V1-situated stalk subunits of the yeast vacuolar proton-translocating ATPase. J. Biol. Chem. 272, 26,787–26,793.Google Scholar
  43. 43.
    Wieczorek, H., Grüber, G., Harvey, W. R., Huss, M., Merzendorfer, H., and Zeiske, W. (2000) Structure and regulation of insect plasma membrane H+-V-ATPase. J. Exp. Biol. 203, 127–135.PubMedGoogle Scholar
  44. 44.
    Ho, M. N., Hirata, R., Umemoto, N., Ohya, Y., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1993) VMA13 encodes a 54-kDa vacuolar H(+)-ATPase subunit required for activity but not assembly of the enzyme complex in Saccharomyces cerevisiae. J. Biol. Chem. 268, 18,286–18,292.Google Scholar
  45. 45.
    Xie, X. S., Crider, B. P., Ma, Y. M., and Stone, D. K. (1994) Role of a 50–57-kDa polypeptide heterodimer in the function of the clathrin-coated vesicle proton pump. J. Biol. Chem. 269, 25,809–25,815.Google Scholar
  46. 46.
    Xie, X. S. (1996) Reconstitution of ATPase activity from individual subunits of the clathrin-coated vesicle proton pump. J. Biol. Chem. 271, 30,980–30,985.Google Scholar
  47. 47.
    Liu, Q., Feng, Y., and Forgac, M. (1994) Activity and in vitro reassembly of the coated vesicle (H+)-ATPase requires the 50 kDa subunit of the clathrin assembly complex AP-2. J. Biol. Chem. 269, 32,592–31,597.Google Scholar
  48. 48.
    Zhou, Z., Peng, S.-B., Crider, B. P., Andersen, P., Xie, X.-S., and Stone, D. K. (1999) Recombinant SFD isoforms activate vacuolar proton pumps. J. Biol. Chem. 274, 15,913–15,919.Google Scholar
  49. 49.
    Sagermann, M. and Matthews, B. W. (2000) Cloning, expression and crystallization of VMA13p, an essential subunit of the vacuolar H+-ATPase of Saccharomyces cerevisiae. Acta Cryst. 56, 475–477.Google Scholar
  50. 50.
    Leng, X. H., Manolson, M. F., Liu, Q., and Forgac, M. (1996) Site-directed mutagenesis of the 100 kDa subunit Vphp1 of the yeast vacuolar H+-ATPase. J. Biol. Chem. 271, 22,487–22,493.Google Scholar
  51. 51.
    Manolson, M. F., Proteau, D., Preston, R. A., Stenbit, A., Roberts, B. T., Hoyt, M., et al. (1992) The vph1 gene encodes a 95 kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H+-ATPase. J. Biol. Chem. 267, 14,294–14,303.Google Scholar
  52. 52.
    Manolson, M. F., Wu, B., Proteau, D., Taillon, B. E., Roberts, B. T., Hoyt, M. A., and Jones, E. W. (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J. Biol. Chem. 269, 14,064–14,074.Google Scholar
  53. 53.
    Leng, X. H., Nishi, T., and Forgac, M. (1999) Transmembrane topography of the 100 kDa a subunit (Vph1p) of the yeast vacuolar protontranslocating ATPase. J. Biol. Chem. 274, 14,655–14,661.Google Scholar
  54. 54.
    Mandel, M., Moriyama, Y., Hulmes, J. D., Pan, Y. C., Nelson, H., and Nelson, N. (1998) cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Proc. Natl. Acad. Sci. USA 85, 5521–5524.Google Scholar
  55. 55.
    Arai, H., Berne, M., and Forgac, M. (1987) Inhibition of the coated vesicle proton pump and labeling of a 17000 Dalton polypeptide by DCCD. J. Biol. Chem. 262, 11,006–11,011.Google Scholar
  56. 56.
    Umemoto, N., Ohya, Y., and Anraku, Y. (1991) VMA11, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H(+)-ATPase activity. J. Biol. Chem. 266, 24,526–24,532.Google Scholar
  57. 57.
    Hirata, R., Graham, L. A., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1997) VMA11 and VMA16 encode the second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase. J. Biol. Chem. 272, 4795–4803.PubMedGoogle Scholar
  58. 58.
    Oka, T., Yamamoto, R., and Futai, M. (1998) Multiple genes for vacuolar-type ATPase proteolipids in Caenorhabditis elegans. A new gene, vha-3, has a distinct cell-specific distribution. J. Biol. Chem. 273, 22,570–22,576.Google Scholar
  59. 59.
    Perera, I. Y., Li, X., and Sze, H. (1995) Several distinct genes encode nearly identical to 16 kDa proteolipids of the vacuolar H(+)-ATPase from Arabidopsis thaliana. Plant Mol. Biol. 29, 227–244.PubMedGoogle Scholar
  60. 60.
    Nishigori, H., Yamada, S., Tomura, H., Fernald, A. A., Beau, M. M. L., Takeuchi, T., and Takeda, J. (1998) Identification and characterization of the gene encoding a second proteolipid subunit of human vacuolar H+-ATPase (ATP6F). Genomics 50, 222–228.PubMedGoogle Scholar
  61. 61.
    Bäuerle, C., Ho, M. N., Lindorfer, M. A., and Stevens, T. H. (1993) The Saccharomyces cerevisiae VMA6 gene encodes the 36-kDa subunit of the vacuolar H(+)-ATPase membrane sector. J. Biol. Chem. 268, 12,749–12,757.Google Scholar
  62. 62.
    Supek, F., Supekova, L., Mandiyan, S., Pan, Y.-C., Nelson, H., and Nelson, N. (1994) A novel accessory subunit for vacuolar H-ATPase from chromaffin granules. J. Biol. Chem. 269, 24,102–24,106.Google Scholar
  63. 63.
    Ludwig, J., Kerscher, S., Brandt, U., Pfeiffer, K., Getlawi, F., Apps, D. K., and Schägger, H. (1998) Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton ATPase from chromaffin granules. J. Biol. Chem. 273, 10,939–10,947.Google Scholar
  64. 64.
    Merzendorfer, H., Huss, M., Schmid, R., Harvey, W. R., and Wiezzorek, H. (1999) A novel insect V-ATPase subunit M9.7 is glycosylated extensively. J. Biol. Chem. 274, 17,372–17,378.Google Scholar
  65. 65.
    Brown, D., Gluck, S., and Hartwig, J. (1987) Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ ATPase. J. Cell. Biol. 105, 1637–1648.PubMedGoogle Scholar
  66. 66.
    Bowman, B. J., Dschida, W. J., Harris, T., and Bowman, E. J. (1989) The vacuolar ATPase of Neurospora crassa contains an F1-like structure. J. Biol. Chem. 264, 15,606–15,612.Google Scholar
  67. 67.
    Klink, R. and Lüttge, U. (1991) Electron microscopic demonstration of a “head and stalk” structure of the leaf vacuolar ATPase in Mesembryanthemum crystallinum L. Bot. Acta 104, 122–131.Google Scholar
  68. 68.
    Taiz, S. L. and Taiz, L. (1991) Ultrastructural comparison of the vacuolar and mitochondrial H+-ATPases of Daucus carota. Bot. Acta 104, 117–121.Google Scholar
  69. 69.
    Dschida, W. J. and Bowman, B. J. (1992) Structure of the vacuolar ATPase from Neurospora crassa as determined by electron microscopy. J. Biol. Chem. 267, 18,783–18,789.Google Scholar
  70. 70.
    Bowman, B. J., V'azquez-Laslop, N., and Bowman, E. J. (1992) The vacuolar ATPase of Neurospora crassa. J. Bioenerg. Biomembr. 24, 361–370.PubMedGoogle Scholar
  71. 71.
    Wilkens, S., Vasilyeva, E., and Forgac, M. (1999) Structure of the vacuolar ATPase by electron microscopy. J. Biol. Chem. 274, 31,804–31,810.Google Scholar
  72. 72.
    Lücken, U., Gogol, E. P., and Capaldi, R. A. (1990) Structure of the ATP synthase complex (ECF1F0) of Escherichia coli from cryoelectron microscopy. Biochemistry 29, 5339–5343.PubMedGoogle Scholar
  73. 73.
    Wilkens, S., Zhou, J., Nakayama, R., Dunn, S. D., and Capaldi, R. A. (1999) Localization of the δ subunit in the Escherichia coli F1F0-ATPsynthase by immuno electron microscopy: the δ subunit binds on top of the F1. J. Mol. Biol. 295, 387–391.Google Scholar
  74. 74.
    Boekema, E. J., Ubbink-Kok, T., Lolkema, J. S., Brisson, A., and Konings, W. N. (1997) Visualization of a peripheral stalk in V-type ATPase: evidence for the stator structure essential to rotational catalysis. Proc. Acad. Natl. Sci. USA 94, 14,291–14,293.Google Scholar
  75. 75.
    Boekema, E. J., Ubbink-Kok, T., Lolkema, J. S., Brisson, A., and Konings, W. N. (1998) Structure of V-type ATPase from Clostridium fervidus by electron microscopy. Photosynth. Res. 57, 267–273.Google Scholar
  76. 76.
    Ubbink-Kok, T., Boekema, E. J., van Breemen, J. F. L., Brisson, A., Konings, W. N., and Lolkema, J. S. (2000) Stator structure and subunit composition of the V1/V0 Na+-ATPase of the thermophilic bacterium Caloramator fervidus. J. Mol. Biol. 296, 311–321.PubMedGoogle Scholar
  77. 77.
    Wilkens, S. and Capaldi, R. A. (1998) Electron microscopic evidence for two stalks linking the F1 and F0 in the ATPsynthase from Escherichia coli. Biochem. Biophys. Acta 1365, 93–97.PubMedGoogle Scholar
  78. 78.
    Wilkens, S. and Capaldi, R. A. (1998) ATPsynthases second stalk comes into focus. Nature 393, 29.PubMedGoogle Scholar
  79. 79.
    Böttcher, B., Schwarz, L., and Gräber, P. (1998) Direct indication for the existence of a double stalk in CF0F1. J. Mol. Biol. 281, 757–762.PubMedGoogle Scholar
  80. 80.
    Karrasch, S. and Walker, J. E. (1999) Novel features in the structure of bovine ATPsynthase. J. Mol. Biol. 290, 379–384.PubMedGoogle Scholar
  81. 81.
    Svergun, D. I., Konrad, S., Huss, M., Koch, M. H. J., Wieczorek, H., Altendorf, K., Volkov, V. V., and Grüber, G. (1998) Quaternary structure of V1 and F1 ATPase: significance of structural homologies and diversities. Biochemistry 37, 17,659–17,663.Google Scholar
  82. 82.
    Radermacher, M., Ruiz, T., Harvey, W. R., Wieczorek, H., and Grüber, G. (1999) Molecular architecture of Manduca sexta midgut V1 ATPase visualized by electron microscopy. FEBS Lett. 453, 383–386.PubMedGoogle Scholar
  83. 83.
    Boekema, E. J., Berden, J. A., and van Heel, M. G. (1986) Structure of mitochondrial F1-ATPase studied by electron microscopy and image processing. Biochim. Biophys. Acta 851, 353–360.PubMedGoogle Scholar
  84. 84.
    Gogol, E. P., Lücken, U., Bork, T., and Capaldi, R. A. (1989) Molecular architecture of Escherichia coli F1 adenosinetriphosphatase. Biochemistry 28, 4709–4716.PubMedGoogle Scholar
  85. 85.
    Lünsdorf, H., Ehrig, K., Friedl, P., and Schairer, H. U. (1984) Use of monoclonal antibodies in immuno-electron microscopy for the determination of subunit stoichiometry in oligonmeric enzymes. There are three alpha-subunits in the F1-ATPase of Escherichia coli. J. Mol. Biol. 173, 131–136.PubMedGoogle Scholar
  86. 86.
    Gogol, E. P., Aggeler, R., Sagermann, M., and Capaldi, R. A. (1989) Cryoelectron microscopy of Escherichia coli F1 adenosinetriphosphatase decorated with monoclonal antibodies to individual subunits of the complex. Biochemistry 28, 4717–4724.PubMedGoogle Scholar
  87. 87.
    Zhang, J., Myers, M., and Forgac, M. (1992) Characterization of the V0 domain of the coated vesicle proton-ATPase. J. Biol. Chem. 267, 9773–9778.PubMedGoogle Scholar
  88. 88.
    Wieczorek, H., Grüber, G., Harvey, W. R., Huss, M., and Merzendorfer, H. (1999) The plasma membrane H+-V-ATPase from tobacco hornworm midgut. J. Bioenerg. Biomembr. 31, 67–74.PubMedGoogle Scholar
  89. 89.
    Fillingame, R. H., Mosher, M. E., Negrin, R. S., and Peters, L. K. (1983) H+-ATPase of Escherichia coli uncB402 mutation leads to loss of chi subunit of F0 sector. J. Biol. Chem. 258, 604–609.PubMedGoogle Scholar
  90. 90.
    Schneider, E. and Altendorf, K. (1985) All three subunits are required for the reconstitution of an active proton channel (F0) of Escherichia coli ATP synthase (F1F0). EMBO J. 4, 515–518.PubMedGoogle Scholar
  91. 91.
    Birkenhäger, R., Hoppert, M., Deckers-Hebestreit, G., Mayer, F., and Altendorf, K. (1995) The F0 complex of the Escherichia coli ATP synthase. Investigation by electron spectroscopic imaging and immuno electron microscopy. Eur. J. Biochem. 230, 58–67.PubMedGoogle Scholar
  92. 92.
    Singh, S., Turina, P., Bustamante, C. J., Keller, D. J., and Capaldi, R. (1996) Topographical structure of membrane-bound Escherichia coli F1F0 ATP synthase in aqueous buffer. FEBS Lett. 397, 30–34.PubMedGoogle Scholar
  93. 93.
    Fillingame, R. H. (1996) Membrane sectors of F- and V-type H+-transporting ATPases Curr. Opin. Struct. Biol. 6, 491–498.PubMedGoogle Scholar
  94. 94.
    Margolles-Clark, E., Tenney, K., Bowman, E. J., and Bowman, B. J. (1999) The structure of the vacuolar ATPase in Neurospora crassa. J. Bioenerg. Biomembr. 31, 29–37.PubMedGoogle Scholar
  95. 95.
    Páli, T., Finbow, M. E., Holzenburg, A., Findlay, J. B., and Marsh, D. (1995) Lipid-protein interactions and assembly of the 16-kDa channel polypeptide from Nephrops norvegicus. Studies with spin-label electron spin resonance spectroscopy and electron microscopy. Biochemistry 34, 9211–9218.PubMedGoogle Scholar
  96. 96.
    John, S. A., Saner, D., Pitts, J. D., Holzenburg, A., Finbow, M. E., and Lal, R. (1997) Atomic force microscopy of arthropod gap junctions. J. Struct. Biol. 120, 22–31.PubMedGoogle Scholar
  97. 97.
    Stock, D., Leslie, A. G. W., and Walker, J. E. (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705.PubMedGoogle Scholar
  98. 98.
    Seelert, H., Poetsch, A., Dencher, N. A., Engel, A., Stahlberg, H., and Muller, D. J. (2000) Structural biology: proton-powered turbine of a plant motor. Nature 405, 418–419.PubMedGoogle Scholar
  99. 99.
    Jones, P. C. and Filligame, R. H. (1998) Genetic fusions of subunit c in the F0 sector of H+-transporting ATPsynthase: functional dimers and trimers and determination of stoichiometry by cross-linking analysis. J. Biol. Chem. 273, 29,701–29,705.Google Scholar
  100. 100.
    Schemidt, R. A., Qu, J., Whilliams, J. R., and Brusilow, W. S. (1998) Effects of carbon source on expression of F0 genes and on the stoichiometry of the c subunit in the F1F0 ATPase of Escherichia coli. J. Bacteriol. 180, 3205–3208.PubMedGoogle Scholar
  101. 101.
    Boekema, E. J., van Breemen, J. F. L., Brisson, A., Ubbink-Kok, T., Konings, W. N., and Lolkema, J. S. (1999) Connecting stalks in V-ATPase. Nature 401, 37–38.PubMedGoogle Scholar
  102. 102.
    Nelson, N., Perzov, N., Cohen, A., Hagai, K., Padler, V., and Nelson, H. (2000) Cellular biology of proton-motive force generation by V-ATPases. J. Exp. Biol. 203, 89–95.PubMedGoogle Scholar
  103. 103.
    Sumner, J. P, Dow, J. A., Earley, F. G., Klein, U., Jäger, D., and Wieczorek, H. (1995) Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J. Biol. Chem. 270, 5649–5653.PubMedGoogle Scholar
  104. 104.
    Kane, P. M. (1995) Disassembly and reassembly of the yeast vacuolar H+-ATPase in vivo. J. Biol. Chem. 270, 17,025–17,032.Google Scholar
  105. 105.
    Peng, S.-B., Li, X., Crider, B. P., Zhou, Z., Andersen, P., Tsai, S. J., Xie, X.-S., and Stone, D. K. (1999) Identification and reconstitution of an isofrom of the 116 kDa subunit of the vacuolar proton translocating ATPase. J. Biol. Chem. 275, 2549–2555.Google Scholar
  106. 106.
    Toyomura, T., Oka, T., Yamaguchi, C., Wada, Y., and Futai, M. (2000) Three subunit a isoforms of mouse vacuolar H(+)-ATPase. Preferential expression of the a3 isoform during osteoclast differentiation. J. Biol. Chem. 275, 8760–8765.PubMedGoogle Scholar
  107. 107.
    Nishi, T. and Forgac, M. (2000) Molecular cloning and expression of three isoforms of the 100-kDa a subunit of the mouse vacuolar proton-translocating ATPase. J. Biol. Chem. 275, 6824–6830.PubMedGoogle Scholar
  108. 108.
    Crider, B. P., Andersen, P., White, A. E., Zhou, Z., Li, X., Mattsson, J. P., Lundberg, L., Keeling, D. J., Xie, X. S., Stone, D. K., and Peng, S. B. (1997) Subunit G of the vacuolar proton pump. Molecular characterization and functional expression. J. Biol. Chem. 272, 10,721–10,728.Google Scholar
  109. 109.
    Zhou, Z., Peng, S.-B., Crider, B. P., Slaughter, C., Xie, X.-S., and Stone, D. K. (1998) Molecular characterization of the 50- and 57-kDa subunits of the bovine vacuolar proton pump. J. Biol. Chem. 273, 5878–5884.PubMedGoogle Scholar
  110. 110.
    Legerton, T. L., Kanamori, K., Weiss, R. L., and Roberts, J. D. (1983) Measurements of cytoplasmic and vacuolar pH in Neurospora using nitrogen-15 nucelar magnetic resonance spectroscopy. Biochemistry 22, 899–903.PubMedGoogle Scholar
  111. 111.
    Futai, M., Oka, T., Sun-Wada, G.-H., Moriyama, Y., Kanazawa, H., and Wada, Y. (2000) Luminal acidification of diverse organelles by V-ATPase in aimal cells. J. Exp. Biol. 203, 107–116.PubMedGoogle Scholar
  112. 112.
    Lepier, A., Azuma, M., Harvey, W. R., and Wieczorek, H. (1994) K+/H+ antiport in the tobacco hornworm midgut: the K(+)-transporting component of the K+ pump. J. Exp. Biol. 196, 361–373.PubMedGoogle Scholar
  113. 113.
    Muller, M., Irkens-Kiesecker, U., Rubinstein, B., and Taiz, L. (1996) On the mechanism of hyperacidification in lemon. Comparison of the vacuolar H(+)-ATPase activities of fruits and epicotyls. J. Biol. Chem. 271, 1916–1924.PubMedGoogle Scholar
  114. 114.
    Fillingame, R. H. (1997) Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of inteacting parts in a dynamic molecular machine J. Exp. Biol. 200, 217–224.PubMedGoogle Scholar
  115. 115.
    Fillingame, R. H., Jiang, W., and Dmitriev, O. Y. (2000) Coupling H+ transport to rotary catalysis in F-type ATPsynthases: structure and organization of the transmembrane rotary motor. J. Exp. Biol. 203, 9–17.PubMedGoogle Scholar
  116. 116.
    Junge, W., Lill H., and Engelbrecht, S. (1997) ATP synthase: on electrochemical transducer with rotatory mechanics. TIBS 22, 420–423.PubMedGoogle Scholar
  117. 117.
    Boyer, P. (1993) The binding change mechanism for ATP synthase: some probabilities and possibilities. Biochim. Biophys. Acta 1140, 215–250.PubMedGoogle Scholar
  118. 118.
    Sabbert, D., Engelbrecht, S., and Junge, W. (1996) Intersubunit rotation in active F-ATPase. Nature 381, 623–626.PubMedGoogle Scholar
  119. 119.
    Zhou, Y., Duncan, T. M., and Cross, R. L. (1997) Subunit rotation in Escherichia coli F0F1-ATP synthase during oxidative phosphorylation. Proc. Natl. Acad. Sci. USA 94, 10,583–10,587.Google Scholar
  120. 120.
    Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997) Direct observation of the rotation of F1-ATPase. Nature 386, 299–302.PubMedGoogle Scholar
  121. 121.
    Aggeler, R., Ogilvie, I., and Capaldi, R. A. (1997) Rotation of a γε subunit domain in the Escherichia coli F1F0-ATP synthase complex. The γε subunits are essentially randomly distributed relative to the α3β3δ domain in the intact complex. J. Biol. Chem. 272, 19,621–19,624.Google Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Stephan Wilkens
    • 1
  1. 1.Department of BiochemistryUniversity of California, RiversideRiverside

Personalised recommendations