Cell Biochemistry and Biophysics

, Volume 34, Issue 1, pp 17–59 | Cite as

Negative regulation of Janus kinases

Original Article

Abstract

The precise regulation of both the magnitude and the duration of Janus kinase (JAK) catalytic activity is essential for the cytokine orchestration of many biological processes, and the dysregulation of JAK activity has pathological implications. Immunosuppressive disease states, such as X-linked severe combined immunodeficiency, arise from inappropriate JAK inhibition. In contrast, a limited number of cancers, primarily leukemias, result from constitutive or enhanced activation of JAK activity. JAKs are no longer implicated only in classic cytokine receptor-mediated signaling pathways, but are now also known to integrate indirectly into other receptor-mediated signal transduction processes. Therefore, an increasing number of therapeutic applications exist for biological-response modifiers that can restore aberrant JAK activity to normal levels. Exciting breakthroughs in both physiological and pharmacological methods of selective inhibition of cytokine-JAK-signal transducers and activators of transcription pathways have recently emerged in the form of suppressors of cytokine signaling (also known as cytokine-inducible SH2 protein, JAK-binding protein, or STAT-induced STAT inhibitor) proteins and novel dimethoxyquinazoline derivatives, respectively. The basis of these and other mechanisms of negative regulation of JAK activity, including the suppression of jak expression levels caused by tumor- or pathogen-derived agents, the complex interactions of JAKs with phosphatases, and the redox regulation of JAK catalytic activity, is the focus of this review.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O’Shea, J. J. (1997) Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet? Immunity. 7, 1–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Liu, K. D., Gaffen, S. L., and Goldsmith, M. A. (1998) JAK/STAT signaling by cytokine receptors. Curr. Opin. Immunol. 10, 271–278.PubMedCrossRefGoogle Scholar
  3. 3.
    Duhé, R. J. and Farrar, W. L. (1998) Structural and mechanistic aspects of Janus kinases: How the two-faced god wields a double-edged sword. J. Interferon Cytokine Res. 18, 1–15.PubMedGoogle Scholar
  4. 4.
    Heinrich, P. C., Behrmann, I., Muller-Newen, G., Schaper, F., and Graeve, L. (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334, 297–314.PubMedGoogle Scholar
  5. 5.
    Marrero, M. B., Venema, V. J., Ju, H., Eaton, D. C., and Venema, R. C. (1998) Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles of SHP-1 and SHP-2. Am. J. Physiol 275, C1216-C1223.PubMedGoogle Scholar
  6. 6.
    Mellado, M., Rodriguez-Frade, J. M., Aragay, A., del Real, G., Martin, A. M., Vila-Coro, A. J., et al. (1998) The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J. Immunol. 161, 805–813.PubMedGoogle Scholar
  7. 7.
    Rodig, S. J., Meraz, M. A., White, J. M., Lampe, P. A., Riley, J. K., Arthur, C. D., et al. (1998) Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93, 373–383.PubMedCrossRefGoogle Scholar
  8. 8.
    Neubauer, H., Cumano, A., Muller, M., Wu, H., Huffstadt, U., and Pfeffer, K. (1998) Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93, 397–409.PubMedCrossRefGoogle Scholar
  9. 9.
    Parganas, E., Wang, D., Stravopodis, D., Topham, D. J., Marine, J. C., Teglund, S., et al. (1998) Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93, 385–395.PubMedCrossRefGoogle Scholar
  10. 10.
    Nosaka, T., van Deursen, J. M., Tripp, R. A., Thierfelder, W. E., Witthuhn, B. A., McMickle, A. P., et al. (1995) Defective lymphoid development in mice lacking Jak3. Science 270, 800–802.PubMedCrossRefGoogle Scholar
  11. 11.
    Park, S. Y., Saijo, K., Takahashi, T., Osawa, M., Arase, H., Hirayama, N., et al. (1995) Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 3, 771–782.PubMedCrossRefGoogle Scholar
  12. 12.
    Thomis, D. C., Gurniak, C. B., Tivol, E., Sharpe, A. H., and Berg, L. J. (1995) Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 270, 794–797.PubMedCrossRefGoogle Scholar
  13. 12a.
    Karaghiosoff, M., Neubauer, H., Lassnig, C., et al. (2000) Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 13, 549–560.PubMedCrossRefGoogle Scholar
  14. 12b.
    Shimoda, K., Kato, K., Aoki, K., et al. (2000) Tyk2 plays a restricted role in IFN-α signaling, although it is required for IL-12-mediated T-cell function. Immunity 13, 561–571.PubMedCrossRefGoogle Scholar
  15. 13.
    Cunningham, B. C., Ultsch, M., de Vos, A. M., Mulkerrin, M. G., Clauser, K. R., and Wells, J. A. (1991) Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science 254, 821–825.PubMedCrossRefGoogle Scholar
  16. 14.
    De Vos, A. M., Ultsch, M., and Kossiakoff, A. A. (1992) Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312.PubMedCrossRefGoogle Scholar
  17. 15.
    Livnah, O., Stura, E. A., Middleton, S. A., Johnson, D. L., Jolliffe, L. K., and Wilson, I. A. (1999) Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283, 987–990.PubMedCrossRefGoogle Scholar
  18. 16.
    Remy, I., Wilson, I. A., and Michnick, S. W. (1999) Erythropoietin receptor activation by a ligand-induced conformation change. Science 283, 990–993.PubMedCrossRefGoogle Scholar
  19. 17.
    Gauzzi, M. C., Velazquez, L., McKendry, R., Mogensen, K. E., Fellous, M., and Pellegrini, S. (1996) Interferon-alpha-dependent activation of Tyk2 requires phosphorylation of positive regulatory tyrosines by another kinase. J. Biol. Chem. 271, 20,494–20,500.Google Scholar
  20. 18.
    Feng, J., Witthuhn, B. A., Matsuda, T., Kohlhuber, F., Kerr, I. M., and Ihle, J. N. (1997) Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol. Cell Biol. 17, 2497–2501.PubMedGoogle Scholar
  21. 19.
    Zhou, Y. J., Hanson, E. P., Chen, Y. Q., Magnuson, K., Chen, M., Swann, P. G., et al. (1997) Distinct tyrosine phosphorylation sites in JAK3 kinase domain positively and negatively regulate its enzymatic activity. Proc. Natl. Acad. Sci. USA 94, 13,850–13,855.Google Scholar
  22. 20.
    Zheng, J., Knighton, D. R., Xuong, N. H., Taylor, S. S., Sowadski, J. M., and Ten Eyck, L. F. (1993) Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformation. Protein Sci. 2, 1559–1573.PubMedGoogle Scholar
  23. 21.
    Adams, J. A., McGlone, M. L., Gibson, R., and Taylor, S. S. (1995) Phosphorylation modulates catalytic function and regulation in the cAMP-dependent protein kinase. Biochemistry 34, 2447–2454.PubMedCrossRefGoogle Scholar
  24. 22.
    Mohammadi, M., Schlessinger, J., and Hubbard, S. R. (1996) Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell 86, 577–587.PubMedCrossRefGoogle Scholar
  25. 23.
    Hubbard, S. R. (1997) Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581.PubMedCrossRefGoogle Scholar
  26. 24.
    Weiss, A. and Schlessinger, J. (1998) Switching signals on or off by receptor dimerization. Cell 94, 277–280.PubMedCrossRefGoogle Scholar
  27. 25.
    Krishnan, K., Pine, R., and Krolewski, J. J. (1997) Kinase-deficient forms of Jak1 and Tyk2 inhibit interferon alpha signaling in a dominant manner. Eur. J. Biochem. 247, 298–305.PubMedCrossRefGoogle Scholar
  28. 26.
    Briscoe, J., Rogers, N. C., Witthuhn, B. A., Watling, D., Harpur, A. G., Wilks, A. F., et al. (1996) Kinase-negative mutants of JAK1 can sustain interferon-gamma-inducible gene expression but not an antiviral state. EMBO J. 15, 799–809.PubMedGoogle Scholar
  29. 27.
    Witthuhn, B. A., Williams, M. D., Kerawalla, H., and Uckun, F. M. (1999) Differential substrate recognition capabilities of Janus family protein kinases within the interleukin 2 receptor (IL2R) system: Jak3 as a potential molecular target for treatment of leukemias with a hyperactive Jak-Stat signaling machinery. Leuk. Lymphoma 32, 289–297.PubMedGoogle Scholar
  30. 28.
    Soderling, T. R. (1990) Protein kinases. Regulation by autoinhibitory domains. J. Biol. Chem. 265, 1823–1826.PubMedGoogle Scholar
  31. 29.
    Johnson, L. N., Noble, M. E., and Owen, D. J. (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85, 149–158.PubMedCrossRefGoogle Scholar
  32. 30.
    Dennis, P. B., Pullen, N., Pearson, R. B., Kozma, S. C., and Thomas, G. (1998) Phosphorylation sites in the autoinhibitory domain participate in p70(s6k) activation loop phosphorylation. J. Biol. Chem. 273, 14,845–14,852.CrossRefGoogle Scholar
  33. 31.
    Smith, M. K., Colbran, R. J., Brickey, D. A., and Soderling, T. R. (1992) Functional determinants in the autoinhibitory domain of calcium/calmodulin-dependent protein kinase II. Role of His282 and multiple basic residues. J. Biol. Chem. 267, 1761–1768.PubMedGoogle Scholar
  34. 32.
    Sanchez, V. E. and Carlson, G. M. (1993) Isolation of an autoinhibitory region from the regulatory beta-subunit of phosphorylase kinase. J. Biol. Chem. 268, 17,889–17,895.Google Scholar
  35. 33.
    Goldberg, J., Nairn, A. C., and Kuriyan, J. (1996) Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell 84, 875–887.PubMedCrossRefGoogle Scholar
  36. 34.
    Hu, S. H., Lei, J. Y., Wilce, M. C., Valenzuela, M. R., Benian, G. M., Parker, M. W., and Kemp, B. E. (1994) Crystallization and preliminary X-ray analysis of the auto-inhibited twitchin kinase. J. Mol. Biol. 236, 1259–1261.PubMedCrossRefGoogle Scholar
  37. 35.
    Hu, S. H., Parker, M. W., Lei, J. Y., Wilce, M. C., Benian, G. M., and Kemp, B. E. (1994) Insights into autoregulation from the crystal structure of twitchin kinase. Nature 369, 581–584.PubMedCrossRefGoogle Scholar
  38. 36.
    Luo, H., Rose, P., Barber, D., Hanratty, W. P., Lee, S., Roberts, T. M., D’Andrea, A. D., and Dearolf, C. R. (1997) Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol. Cell Biol. 17, 1562–1571.PubMedGoogle Scholar
  39. 37.
    Duhé, R. J. and Farrar, W. L. (1995) Characterization of active and inactive forms of the JAK2 protein-tyrosine kinase produced via the baculovirus expression vector system. J. Biol. Chem. 270, 23,084–23,089.Google Scholar
  40. 38.
    Davis, E., Krishnan, K., Yan, H., Newcomb, E. W., and Krolewski, J. J. (1996) A mutant form of p135tyk2, an interferon-α inducible tyrosine kinase, suppresses the transformed phenotype of Daudi cells. Leukemia 10, 543–551.PubMedGoogle Scholar
  41. 39.
    Conway, G., Margoliath, A., Wong-Madden, S., Roberts, R. J., and Gilbert, W. (1997) Jak1 kinase is required for cell migrations and anterior specification in zebrafish embryos. Proc. Natl. Acad. Sci. USA 94, 3082–3087.PubMedCrossRefGoogle Scholar
  42. 40.
    Zhuang, H., Patel, S. V., He, T. C., Niu, Z., and Wojchowski, D. M. (1994) Dominant negative effects of a carboxy-truncated Jak2 mutant on Epo- induced proliferation and Jak2 activation. Biochem. Biophys. Res. Commun. 204, 278–283.PubMedCrossRefGoogle Scholar
  43. 41.
    Zhuang, H., Patel, S. V., He, T. C., Sonsteby, S. K., Niu, Z., and Wojchowski, D. M. (1994). Inhibition of erythropoietin-induced mitogenesis by a kinase-deficient form of Jak2. J. Biol. Chem. 269, 21,411–21,414.Google Scholar
  44. 42.
    Schindler, C. and Strehlow, I. (2000) Cytokines and STAT signaling. Adv. Pharmacol. 47, 113–174.PubMedGoogle Scholar
  45. 43.
    Chen, X., Vinkemeier, U., Zhao, Y., Jeruzalmi, D., Darnell, J. E., Jr., and Kuriyan, J. (1998) Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93, 827–839.PubMedCrossRefGoogle Scholar
  46. 44.
    Becker, S., Groner, B., and Muller, C. W. (1998) Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394, 145–151.PubMedCrossRefGoogle Scholar
  47. 45.
    Akira, S. (1999) Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells 17, 138–146.PubMedCrossRefGoogle Scholar
  48. 46.
    Park, C., Li, S., Cha, E., and Schindler, C. (2000) Immune response in Stat2 knockout mice. Immunity, 13, 795–804.PubMedCrossRefGoogle Scholar
  49. 47.
    Noguchi, M., Yi, H., Rosenblatt, H. M., Filipovich, A. H., Adelstein, S., Modi, W. S., McBride, O. W., and Leonard, W. J. (1993) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157.PubMedCrossRefGoogle Scholar
  50. 48.
    Russell, S. M., Tayebi, N., Nakajima, H., Riedy, M. C., Roberts, J. L., Aman, M. J., et al. (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797–800.PubMedCrossRefGoogle Scholar
  51. 49.
    Macchi, P., Villa, A., Giliani, S., Sacco, M. G., Frattini, A., Porta, F., et al. (1995) Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68.PubMedCrossRefGoogle Scholar
  52. 50.
    Cacalano, N. A., Migone, T. S., Bazan, F., Hanson, E. P., Chen, M., Candotti, F., O’Shea, J. J., and Johnston, J. A. (1999) Autosomal SCID caused by a point mutation in the N-terminus of Jak3: mapping of the Jak3-receptor interaction domain. EMBO J. 18, 1549–1558.PubMedCrossRefGoogle Scholar
  53. 51.
    Schumacher, R. F., Mella, P., Lalatta, F., Fiorini, M., Giliani, S., Villa, A., Candotti, F., and Notarangelo, L. D. (1999) Prenatal diagnosis of JAK3 deficient SCID. Prenat. Diagn. 19, 653–656.PubMedCrossRefGoogle Scholar
  54. 52.
    Candotti, F., Oakes, S. A., Johnston, J. A., Notarangelo, L. D., O’Shea, J. J., and Blaese, R. M. (1996) In vitro correction of JAK3-deficient severe combined immunodeficiency by retroviral-mediated gene transduction. J. Exp. Med. 183, 2687–2692.PubMedCrossRefGoogle Scholar
  55. 53.
    Bunting, K. D., Sangster, M. Y., Ihle, J. N., and Sorrentino, B. P. (1998) Restoration of lymphocyte function in Janus kinase 3-deficient mice by retroviral-mediated gene transfer. Nat. Med. 4, 58–64.PubMedCrossRefGoogle Scholar
  56. 54.
    Bunting, K. D., Flynn, K. J., Riberdy, J. M., Doherty, P. C., and Sorrentino, B. P. (1999) Virus-specific immunity after gene therapy in a murine model of severe combined immunodeficiency. Proc. Natl. Acad. Sci. USA 96, 232–237.PubMedCrossRefGoogle Scholar
  57. 55.
    Zhuang, H., Niu, Z., He, T. C., Patel, S. V., and Wojchowski, D. M. (1995) Erythropoietin-dependent inhibition of apoptosis is supported by carboxyl-truncated receptor forms and blocked by dominant-negative forms of Jak2. J. Biol. Chem. 270, 14,500–14,504.CrossRefGoogle Scholar
  58. 56.
    Li, S., Labrecque, S., Gauzzi, M. C., Cuddihy, A. R., Wong, A. H., Pellegrini, S., Matlashewski, G. J., and Koromilas, A. E. (1999) The Human papilloma virus (HPV)-18 E6 oncoprotein physically associates with tyk2 and impairs jak-STAT activation by interferon-alpha. Oncogene 18, 5727–5737.PubMedCrossRefGoogle Scholar
  59. 57.
    Miller, D. M., Rahill, B. M., Boss, J. M., Lairmore, M. D., Durbin, J. E., Waldman, J. W., and Sedmak, D. D. (1998) Human cytomegalovirus inhibits major histocompatibility complex class II expression by disruption of the Jak/Stat pathway. J. Exp. Med. 187, 675–683.PubMedCrossRefGoogle Scholar
  60. 58.
    Lee, E. H. and Rikihisa, Y. (1998) Protein kinase A-mediated inhibition of gamma interferon-induced tyrosine phosphorylation of Janus kinases and latent cytoplasmic transcription factors in human monocytes by Ehrlichia chaffeensis. Infect. Immun. 66, 2514–2520.PubMedGoogle Scholar
  61. 59.
    David, M., Petricoin, E., III, and Larner, A. C. (1996) Activation of protein kinase A inhibits interferon induction of the Jak/Stat pathway in U266 cells. J. Biol. Chem. 271, 4585–4588.PubMedCrossRefGoogle Scholar
  62. 60.
    Nandan, D. and Reiner, N. E. (1995) Attenuation of gamma interferon-induced tyrosine phosphorylation in mononuclear phagocytes infected with Leishmania donovania: selective inhibition of signaling through Janus kinases and Stat1. Infect. Immun. 63, 4495–4500.PubMedGoogle Scholar
  63. 61.
    Blanchette, J., Racette, N., Faure, R., Siminovitch, K. A., and Olivier, M. (1999) Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. Eur. J. Immunol. 29, 3737–3744.PubMedCrossRefGoogle Scholar
  64. 62.
    Ben Efraim, S. (1999) One hundred years of cancer immunotherapy: a critical appraisal. Tumor Biol. 20, 1–24.CrossRefGoogle Scholar
  65. 63.
    Rosenberg, S. A. (1999) A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10, 281–287.PubMedCrossRefGoogle Scholar
  66. 64.
    Kolenko, V., Wang, Q., Riedy, M. C., O’Shea, J., Ritz, J., Cathcart, M. K., et al. (1997) Tumor-induced suppression of T lymphocyte proliferation coincides with inhibition of Jak3 expression and IL-2 receptor signaling: role of soluble products from human renal cell carcinomas. J. Immunol. 159, 3057–3067.PubMedGoogle Scholar
  67. 65.
    Kolenko, V., Rayman, P., Roy, B., Cathcart, M. K., O’Shea, J., Tubbs, R., et al. (1999) Downregulation of JAK3 protein levels in T lymphocytes by prostaglandin E2 and other cyclic adenosine monophosphate-elevating agents: impact on interleukin-2 receptor signaling pathway. Blood 93, 2308–2318.PubMedGoogle Scholar
  68. 66.
    Meydan, N., Grunberger, T., Dadi, H., Shahar, M., Arpaia, E., Lapidot, Z., et al. (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379, 645–648.PubMedCrossRefGoogle Scholar
  69. 67.
    Lacronique, V., Boureux, A., Valle, V. D., Poirel, H., Quang, C. T., Mauchauffe, M., et al. (1997) A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309–1312.PubMedCrossRefGoogle Scholar
  70. 68.
    Peeters, P., Raynaud, S. D., Cools, J., Wlodarska, I., Grosgeroge, J., Philip, P., et al. (1997) Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 90, 2535–2540.PubMedGoogle Scholar
  71. 69.
    Ho, J. M., Beattie, B. K., Squire, J. A., Frank, D. A., and Barber, D. L. (1999) Fusion of the ets transcription factor TEL to Jak2 results in constitutive Jak-Stat signaling. Blood 93, 4354–4364.PubMedGoogle Scholar
  72. 70.
    Schwaller, J., Frantsve, J., Aster, J., Williams, I. R., Tomasson, M. H., Ross, T. S., (1998) Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO J. 17, 5321–5333.PubMedCrossRefGoogle Scholar
  73. 71.
    Zhang, Q., Nowak, I., Vonderheid, E. C., Rook, A. H., Kadin, M. E., Nowell, P. C., Shaw, L. M., and Wasik, M. A. (1996) Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc. Natl. Acad. Sci. USA 93, 9148–9153.PubMedCrossRefGoogle Scholar
  74. 72.
    Liu, R. Y., Fan, C., Garcia, R., Jove, R., and Zuckerman, K. S. (1999) Constitutive activation of the JAK2/STAT5 signal transduction pathway correlates with growth factor independence of megakaryocytic leukemic cell lines. Blood 93, 2369–2379.PubMedGoogle Scholar
  75. 73.
    Harrison, D. A., Binari, R., Nahreini, T. S., Gilman, M., and Perrimon, N. (1995) Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 14, 2857–2865.PubMedGoogle Scholar
  76. 74.
    Smith, M. R., Duhé, R. J., Liu, Y., and Farrar, W. L. (1997) Microinjected cDNA encoding JAK2 protein-tyrosine kinase induces DNA synthesis in NIH 3T3 cells. FEBS Lett. 408, 327–330.PubMedCrossRefGoogle Scholar
  77. 75.
    Chaturvedi, P., Reddy, M. V., and Reddy, E. P. (1998) Src kinases and not JAKs activate STATs during IL-3 induced myeloid cell proliferation. Oncogene 16, 1749–1758.PubMedCrossRefGoogle Scholar
  78. 76.
    Campbell, G. S., Yu, C.-L., Jove, R., and Carter-Su, C. (1997) Constitutive activation of JAK1 in Src-transformed cells. J. Biol. Chem. 272, 2591–2594.PubMedCrossRefGoogle Scholar
  79. 77.
    Murakami, Y., Nakano, S., Niho, Y., Hamasaki, N., and Izuhara, K. (1998) Constitutive activation of Jak-2 and Tyk-2 in a v-Src-transformed human gallbladder adenocarcinoma cell line. J. Cell Physiol 175, 220–228.PubMedCrossRefGoogle Scholar
  80. 78.
    Sayeski, P. P., Ali, M. S., Hawks, K., Frank, S. J., and Bernstein, K. E. (1999) The angiotensin II-dependent association of Jak2 and c-Src requires the N-terminus of Jak2 and the SH2 domain of c-Src. Circ. Res. 84, 1332–1338.PubMedGoogle Scholar
  81. 79.
    Yu, C. L., Jove, R., and Burakoff, S. J. (1997) Constitutive activation of the Janus kinase-STAT pathway in T lymphoma overexpressing the Lck protein tyrosine kinase. J. Immunol. 159, 5206–5210.PubMedGoogle Scholar
  82. 80.
    Danial, N. N., Pernis, A., and Rothman, P. B. (1995) Jak-STAT signaling induced by the v-abl oncogene. Science 269, 1875–1877.PubMedCrossRefGoogle Scholar
  83. 81.
    Shuai, K., Halpern, J., ten Hoeve, J., Rao, X., and Sawyers, C. L. (1996) Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 13, 247–254.PubMedGoogle Scholar
  84. 82.
    Zong, C., Yan, R., August, A., Darnell, J. E., Jr., and Hanafusa, H. (1996) Unique signal transduction of Eyk: constitutive stimulation of the JAK-STAT pathway by an oncogenic receptortype tyrosine kinase. EMBO J. 15, 4515–4525.PubMedGoogle Scholar
  85. 83.
    Migone, T. S., Lin, J. X., Cereseto, A., Mulloy, J. C., O’Shea, J. J., Franchini, G., and Leonard, W. J. (1995) Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269, 79–81.PubMedCrossRefGoogle Scholar
  86. 84.
    Xu, X., Kang, S. H., Heidenreich, O., Okerholm, M., O’Shea, J. J., and Nerenberg, M. I. (1995) Constitutive activation of different Jak tyrosine kinases in human T cell leukemia virus type 1 (HTLV-1) tax protein or virustransformed cells. J. Clin. Invest 96, 1548–1555.PubMedGoogle Scholar
  87. 85.
    Zhang, Q., Lee, B., Korecka, M., Li, G., Weyland, C., Eck, S., et al. (1999) Differences in phosphorylation of the IL-2R associated JAK/STAT proteins between HTLV-I(+), IL-2-independent and IL-2-dependent cell lines and uncultured leukemic cells from patients with adult T-cell lymphoma/leukemia. Leuk. Res. 23, 373–384.PubMedCrossRefGoogle Scholar
  88. 86.
    Takemoto, S., Mulloy, J. C., Cereseto, A., Migone, T. S., Patel, B. K., Matsuoka, M., et al. (1997) Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc. Natl. Acad. Sci. USA 94, 13,897–13,902.CrossRefGoogle Scholar
  89. 87.
    Migone, T. S., Cacalano, N. A., Taylor, N., Yi, T., Waldmann, T. A., and Johnston, J. A. (1998) Recruitment of SH2-containing protein tyrosine phosphatase SHP-1 to the interleukin 2 receptor; loss of SHP-1 expression in human T- lymphotropic virus type I-transformed T cells. Proc. Natl. Acad. Sci. USA 95, 3845–3850.PubMedCrossRefGoogle Scholar
  90. 88.
    Murata, T. and Puri, R. K. (1997) Comparison of IL-13- and IL-4-induced signaling in EBV-immortalized human B cells. Cell Immunol. 175, 33–40.PubMedCrossRefGoogle Scholar
  91. 89.
    Gires, O., Kohlhuber, F., Kilger, E., Baumann, M., Kieser, A., Kaiser, C., et al. (1999) Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J. 18, 3064–3073.PubMedCrossRefGoogle Scholar
  92. 90.
    Lee, Y. H. and Yun, Y. (1998) HBx protein of hepatitis B virus activates Jak1-STAT signaling. J. Biol. Chem. 273, 25,510–25,515.Google Scholar
  93. 91.
    Lamb, P., Haslam, J., Kessler, L., Seidel, H. M., Stein, R. B., and Rosen, J. (1994) Rapid activation of the interferon-gamma signal transduction pathway by inhibitors of tyrosine phosphatases. J. Interferon Res. 14, 365–373.PubMedGoogle Scholar
  94. 92.
    Haque, S. J., Wu, Q., Kammer, W., Friedrich, K., Smith, J. M., Kerr, I. M., Stark, G. R., and Williams, B. R. (1997) Receptor-associated constitutive protein tyrosine phosphatase activity controls the kinase function of JAK1. Proc. Natl. Acad. Sci. USA 94, 8563–8568.PubMedCrossRefGoogle Scholar
  95. 93.
    Klingmüller, U., Lorenz, U., Cantley, L. C., Neel, B. G., and Lodish, H. F. (1995) Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80, 729–738.PubMedCrossRefGoogle Scholar
  96. 94.
    Jiao, H., Berrada, K., Yang, W., Tabrizi, M., Platanias, L. C., and Yi, T. (1996) Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol. Cell Biol. 16, 6985–6992.PubMedGoogle Scholar
  97. 95.
    Stahl, N., Farruggella, T. J., Boulton, T. G., Zhong, Z., Darnell, J. E., Jr., and Yancopoulos, G. D. (1995) Choice of STATs and other substrates specified by modular tyrosine- based motifs in cytokine receptors. Science 267, 1349–1353.PubMedCrossRefGoogle Scholar
  98. 96.
    Yetter, A., Uddin, S., Krolewski, J. J., Jiao, H., Yi, T., and Platanias, L. C. (1995) Association of the interferon-dependent tyrosine kinase Tyk-2 with the hematopoietic cell phosphatase. J. Biol. Chem. 270, 18,179–18,182.Google Scholar
  99. 97.
    David, M., Chen, H. E., Goelz, S., Larner, A. C., and Neel, B. G. (1995) Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol. Cell Biol. 15, 7050–7058.PubMedGoogle Scholar
  100. 98.
    Haque, S. J., Harbor, P., Tabrizi, M., Yi, T., and Williams, B. R. (1998) Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13-dependent signal transduction. J. Biol. Chem. 273, 33,893–33,896.CrossRefGoogle Scholar
  101. 99.
    Tabrizi, M., Yang, W., Jiao, H., DeVries, E. M., Platanias, L. C., Arico, M., and Yi, T. (1998) Reduced Tyk2/SHP-1 interaction and lack of SHP-1 mutation in a kindred of familial hemophagocytic lymphohistiocytosis. Leukemia 12, 200–206.PubMedCrossRefGoogle Scholar
  102. 100.
    Ram, P. A. and Waxman, D. J. (1997) Interaction of growth hormone-activated STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase. J. Biol. Chem. 272, 17,694–17,702.CrossRefGoogle Scholar
  103. 101.
    Lobie, P. E., Ronsin, B., Silvennoinen, O., Haldosen, L. A., Norstedt, G., and Morel, G. (1996) Constitutive nuclear localization of Janus kinases 1 and 2. Endocrinology 137, 4037–4045.PubMedCrossRefGoogle Scholar
  104. 102.
    Bousquet, C., Susini, C., and Melmed, S. (1999) Inhibitory roles for SHP-1 and SOCS-3 following pituitary proopiomelanocortin induction by leukemia inhibitory factor. J. Clin. Invest 104, 1277–1285.PubMedCrossRefGoogle Scholar
  105. 103.
    Tidow, N., Kasper, B., and Welte, K. (1999) SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 are dramatically increased at the protein level in neutrophils from patients with severe congenital neutropenia (Kostmann’s syndrome). Exp. Hematol. 27, 1038–1045.PubMedCrossRefGoogle Scholar
  106. 104.
    Raupich, P., Kasper, B., Tidow, N., and Welte, K. (1995) The protein tyrosine kinase JAK2 is activated in neutrophils from patients with severe congenital neutropenia. Blood 86, 4500–4505.Google Scholar
  107. 105.
    Berchtold, S., Volarevic, S., Moriggl, R., Mercep, M., and Groner, B. (1998) Dominant negative variants of the SHP-2 tyrosine phosphatase inhibit prolactin activation of Jak2 (janus kinase 2) and induction of Stat5 (signal transducer and activator of transcription 5)-dependent transcription. Mol. Endocrinol. 12, 556–567.PubMedCrossRefGoogle Scholar
  108. 106.
    Gadina, M., Stancato, L. M., Bacon, C. M., Larner, A. C., and O’Shea, J. J. (1998) Involvement of SHP-2 in multiple aspects of IL-2 signaling: evidence for a positive regulatory role. J. Immunol. 160, 4657–4661.PubMedGoogle Scholar
  109. 107.
    Maegawa, H., Kashiwagi, A., Fujita, T., Ugi, S., Hasegawa, M., Obata, T., et al. (1996) SHPTP2 serves adapter protein linking between Janus kinase 2 and insulin receptor substrates. Biochem. Biophys. Res. Commun. 228, 122–127.PubMedCrossRefGoogle Scholar
  110. 108.
    Yin, T., Shen, R., Feng, G. S., and Yang, Y. C. (1997) Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases. J. Biol. Chem. 272, 1032–1037.PubMedCrossRefGoogle Scholar
  111. 109.
    You, M., Yu, D. H., and Feng, G. S. (1999) Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol. Cell Biol. 19, 2416–2424.PubMedGoogle Scholar
  112. 110.
    Li, C. and Friedman, J. M. (1999) Leptin receptor activation of SH2 domain containing protein tyrosine phosphatase 2 modulates Ob receptor signal transduction. Proc. Natl. Acad. Sci. USA 96, 9677–9682.PubMedCrossRefGoogle Scholar
  113. 111.
    Nicholson, S. E. and Hilton, D. J. (1998) The SOCS proteins: a new family of negative regulators of signal transduction. J. Leukoc. Biol. 63, 665–668.PubMedGoogle Scholar
  114. 112.
    Starr, R. and Hilton, D. J. (1998) SOCS: suppressors of cytokine signalling. Int. J. Biochem. Cell Biol. 30, 1081–1085.PubMedCrossRefGoogle Scholar
  115. 113.
    Alexander, W. S., Starr, R., Metcalf, D., Nicholson, S. E., Farley, A., Elefanty, A. G., et al. (1999) Suppressors of cytokine signaling (SOCS): negative regulators of signal transduction. J. Leukoc. Biol. 66, 588–592.PubMedGoogle Scholar
  116. 114.
    Metcalf, D. (1999) The SOCS-1 story. Exp. Hematol. 27, 1715–1723.PubMedCrossRefGoogle Scholar
  117. 115.
    Gisselbrecht, S. (1999) The CIS/SOCS proteins: a family of cytokine-inducible regulators of signaling. Eur. Cytokine Netw. 10, 463–470.PubMedGoogle Scholar
  118. 116.
    Yoshimura, A., Ohkubo, T., Kiguchi, T., Jenkins, N. A., Gilbert, D. J., Copeland, N. G., Hara, T., and Miyajima, A. (1995) A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J. 14, 2816–2826.PubMedGoogle Scholar
  119. 117.
    Matsumoto, A., Masuhara, M., Mitsui, K., Yokouchi, M., Ohtsubo, M., Misawa, H., Miyajima, A., and Yoshimura, A. (1997) CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 89, 3148–3154.PubMedGoogle Scholar
  120. 118.
    Endo, T. A., Masuhara, M., Yokouchi, M., Suzuki, R., Sakamoto, H., Mitsui, K., et al. (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387, 921–924.PubMedCrossRefGoogle Scholar
  121. 119.
    Naka, T., Narazaki, M., Hirata, M., Matsumoto, T., Minamoto, S., Aono, A., et al. (1997) Structure and function of a new STAT-induced STAT inhibitor. Nature 387, 924–929.PubMedCrossRefGoogle Scholar
  122. 120.
    Starr, R., Willson, T. A., Viney, E. M., Murray, L. J., Rayner, J. R., Jenkins, B. J., et al. (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387, 917–921.PubMedCrossRefGoogle Scholar
  123. 121.
    Masuhara, M., Sakamoto, H., Matsumoto, A., Suzuki, R., Yasukawa, H., Mitsui, K., et al. (1997) Cloning and characterization of novel CIS family genes. Biochem. Biophys. Res. Commun. 239, 439–446.PubMedCrossRefGoogle Scholar
  124. 122.
    Minamoto, S., Ikegame, K., Ueno, K., Narazaki, M., Naka, T., Yamamoto, H., et al. (1997) Cloning and functional analysis of new members of STAT induced STAT inhibitor (SSI) family: SSI-2 and SSI-3. Biochem. Biophys. Res. Commun. 237, 79–83.PubMedCrossRefGoogle Scholar
  125. 123.
    Hilton, D. J., Richardson, R. T., Alexander, W. S., Viney, E. M., Willson, T. A., Sprigg, N. S., et al. (1998) Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc. Natl. Acad. Sci. USA 95, 114–119.PubMedCrossRefGoogle Scholar
  126. 124.
    Starr, R., Metcalf, D., Elefanty, A. G., Brysha, M., Willson, T. A., Nicola, N. A., Hilton, D. J., and Alexander, W. S. (1998) Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc. Natl. Acad. Sci. USA 95, 14,395–14,399.CrossRefGoogle Scholar
  127. 125.
    Naka, T., Matsumoto, T., Narazaki, M., Fujimoto, M., Morita, Y., Ohsawa, Y., et al. (1998) Accelerated apoptosis of lymphocytes by augmented induction of Bax in SSI-1 (STAT-induced STAT inhibitor-1) deficient mice. Proc. Natl. Acad. Sci. USA 95, 15,577–15,582.CrossRefGoogle Scholar
  128. 126.
    Alexander, W. S., Starr, R., Fenner, J. E., Scott, C. L., Handman, E., Sprigg, N. S., et al. (1999) SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 98, 597–608.PubMedCrossRefGoogle Scholar
  129. 127.
    Marine, J. C., Topham, D. J., McKay, C., Wang, D., Parganas, E., Stravopodis, D., Yoshimura, A., and Ihle, J. N. (1999) SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell 98, 609–616.PubMedCrossRefGoogle Scholar
  130. 128.
    Young, H. A., Klinman, D. M., Reynolds, D. A., Grzegorzewski, K. J., Nii, A., Ward, J. M., et al. (1997) Bone marrow and thymus expression of interferon-gamma results in severe B-cell lineage reduction, T-cell lineage alterations, and hematopoietic progenitor deficiencies. Blood 89, 583–595.PubMedGoogle Scholar
  131. 129.
    Yasukawa, H., Misawa, H., Sakamoto, H., Masuhara, M., Sasaki, A., Wakioka, T., et al. (1999) The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J. 18, 1309–1320.PubMedCrossRefGoogle Scholar
  132. 130.
    Narazaki, M., Fujimoto, M., Matsumoto, T., Morita, Y., Saito, H., Kajita, T., et al. (1998) Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. Proc. Natl. Acad. Sci. USA 95, 13,130–13,134.CrossRefGoogle Scholar
  133. 131.
    Nicholson, S. E., Willson, T. A., Farley, A., Starr, R., Zhang, J. G., Baca, M., et al. (1999) Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J. 18, 375–385.PubMedCrossRefGoogle Scholar
  134. 132.
    Ohya, K., Kajigaya, S., Yamashita, Y., Miyazato, A., Hatake, K., Miura, Y., et al. (1997) SOCS-1/JAB/SSI-1 can bind to and suppress Tec protein-tyrosine kinase. J. Biol. Chem. 272, 27,178–27,182.CrossRefGoogle Scholar
  135. 133.
    De Sepulveda, P., Okkenhaug, K., Rose, J. L., Hawley, R. G., Dubreuil, P., and Rottapel, R. (1999) Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation. EMBO J. 18, 904–915.PubMedCrossRefGoogle Scholar
  136. 134.
    Sakamoto, H., Yasukawa, H., Masuhara, M., Tanimura, S., Sasaki, A., Yuge, K., et al. (1998) A janus kinase inhibitor, JAB, is an interferon-γ-inducible gene and confers resistance to interferons. Blood 92, 1668–1676.PubMedGoogle Scholar
  137. 135.
    Dickensheets, H. L. and Donnelly, R. P. (1999) Inhibition of IL-4-inducible gene expression in human monocytes by type I and type II interferons. J. Leukoc. Biol. 65, 307–312.PubMedGoogle Scholar
  138. 136.
    Losman, J. A., Chen, X. P., Hilton, D., and Rothman, P. (1999) SOCS-1 is a potent inhibitor of IL-4 signal transduction. J. Immunol. 162, 3770–3774.PubMedGoogle Scholar
  139. 137.
    Venkataraman, C., Leung, S., Salvekar, A., Mano, H., and Schindler, U. (1999) Repression of IL-4-induced gene expression by IFN-gamma requires Stat1 activation. J. Immunol. 162, 4053–4061.PubMedGoogle Scholar
  140. 138.
    Dickensheets, H. L., Venkataraman, C., Schindler, U., and Donnelly, R. P. (1999) Interferons inhibit activation of STAT6 by interleukin 4 in human monocytes by inducing SOCS-1 gene expression. Proc. Natl. Acad. Sci. USA 96, 10,800–10,805.CrossRefGoogle Scholar
  141. 139.
    Bjørbaek, C., Elmquist, J. K., Frantz, J. D., Shoelson, S. E., and Flier, J. S. (1998) Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell 1, 619–625.PubMedCrossRefGoogle Scholar
  142. 140.
    Emilsson, V., Arch, J. R., de Groot, R. P., Lister, C. A., and Cawthorne, M. A. (1999) Leptin treatment increases suppressors of cytokine signaling in central and peripheral tissues. FEBS Lett. 455, 170–174.PubMedCrossRefGoogle Scholar
  143. 141.
    Bjørbaek, C., El Haschimi, K., Frantz, J. D., and Flier, J. S. (1999) The role of SOCS-3 in leptin signaling and leptin resistance. J. Biol. Chem. 274, 30,059–30,065.Google Scholar
  144. 142.
    Bjørbaek, C., Elmquist, J. K., El Haschimi, K., Kelly, J., Ahima, R. S., Hileman, S., and Flier, J. S. (1999) Activation of SOCS-3 messenger ribonucleic acid in the hypothalamus by ciliary neurotrophic factor. Endocrinology 140, 2035–2043.PubMedCrossRefGoogle Scholar
  145. 143.
    Auernhammer, C. J., Chesnokova, V., Bousquet, C., and Melmed, S. (1998) Pituitary corticotroph SOCS-3: novel intracellular regulation of leukemia-inhibitory factor-mediated proopiomelanocortin gene expression and adrenocorticotropin secretion. Mol. Endocrinol. 12, 954–961.PubMedCrossRefGoogle Scholar
  146. 144.
    Auernhammer, C. J. and Melmed, S. (1999) Interleukin-11 stimulates proopiomelanocortin gene expression and adrenocorticotropin secretion in corticotroph cells: evidence for a redundant cytokine network in the hypothalamo-pituitary-adrenal axis. Endocrinology 140, 1559–1566.PubMedCrossRefGoogle Scholar
  147. 145.
    Adams, T. E., Hansen, J. A., Starr, R., Nicola, N. A., Hilton, D. J., and Billestrup, N. (1998) Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J. Biol. Chem. 273, 1285–1287.PubMedCrossRefGoogle Scholar
  148. 146.
    Ram, P. A. and Waxman, D. J. (1999) SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J. Biol. Chem. 274, 35,553–35,561.CrossRefGoogle Scholar
  149. 147.
    Favre, H., Benhamou, A., Finidori, J., Kelly, P. A., and Edery, M. (1999) Dual effects of suppressor of cytokine signaling (SOCS-2) on growth hormone signal transduction. FEBS Lett. 453, 63–66.PubMedCrossRefGoogle Scholar
  150. 148.
    Stoiber, D., Kovarik, P., Cohney, S., Johnston, J. A., Steinlein, P., and Decker, T. (1999) Lipopolysaccharide induces in macrophages the synthesis of the suppressor of cytokine signaling 3 and suppresses signal transduction in response to the activating factor IFN-gamma. J. Immunol. 163, 2640–2647.PubMedGoogle Scholar
  151. 149.
    Ito, S., Ansari, P., Sakatsume, M., Dickensheets, H., Vazquez, N., Donnelly, R. P., Larner, A. C., and Finbloom, D. S. (1999) Interleukin-10 inhibits expression of both interferon α and interferon-γ-induced genes by supressing tyrosine phosphorylation of STAT1. Blood 93, 1456–1463.PubMedGoogle Scholar
  152. 150.
    Cassatella, M. A., Gasperini, S., Bovolenta, C., Calzetti, F., Vollebregt, M., Scapini, P., et al. (1999) Interleukin-10 (IL-10) selectively enhances CIS3/SOCS3 mRNA expression in human neutrophils: evidence for an IL-10-induced pathway that is independent of STAT protein activation. Blood 94, 2880–2889.PubMedGoogle Scholar
  153. 151.
    Cohney, S. J., Sanden, D., Cacalano, N. A., Yoshimura, A., Mui, A., Migone, T. S., and Johnston, J. A. (1999) SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol. Cell Biol. 19, 4980–4988.PubMedGoogle Scholar
  154. 152.
    Marine, J. C., McKay, C., Wang, D., Topham, D. J., Parganas, E., Nakajima, H., et al. (1999) SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell 98, 617–627.PubMedCrossRefGoogle Scholar
  155. 153.
    Dey, B. R., Spence, S. L., Nissley, P., and Furlanetto, R. W. (1998) Interaction of human suppressor of cytokine signaling (SOCS)-2 with the insulin-like growth factor-I receptor. J. Biol. Chem. 273, 24,095–24,101.Google Scholar
  156. 154.
    Song, M. M. and Shuai, K. (1998) The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J. Biol. Chem. 273, 35,056–35,062.Google Scholar
  157. 155.
    Yu, C. L. and Burakoff, S. J. (1997) Involvement of proteasomes in regulating Jak-STAT pathways upon interleukin-2 stimulation. J. Biol. Chem. 272, 14,017–14,020.Google Scholar
  158. 156.
    Gebert, C. A., Park, S. H., and Waxman, D. J. (1999) Down-regulation of liver JAK2-STAT5b signaling by the female plasma pattern of continuous growth hormone stimulation. Mol. Endocrinol. 13, 213–227.PubMedCrossRefGoogle Scholar
  159. 157.
    Gebert, C. A., Park, S. H., and Waxman, D. J. (1999) Termination of growth hormone pulse-induced STAT5b signaling. Mol. Endocrinol. 13, 38–56.PubMedCrossRefGoogle Scholar
  160. 158.
    Callus, B. A. and Mathey-Prevot, B. (1998) Interleukin-3-induced activation of the JAK/STAT pathway is prolonged by proteasome inhibitors. Blood 91, 3182–3192.PubMedGoogle Scholar
  161. 159.
    Verdier, F. Chrétien, S., Muller, O., Vrlet, P., Yoshimura, A., Gisselbrecht, S., Lacombe, C., and Mayeux, P. (1998) Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. J. Biol. Chem. 273, 28,185–28,190.CrossRefGoogle Scholar
  162. 160.
    Kamura, T., Sato, S., Haque, D., Liu, L., Kaelin, W. G., Jr., Conaway, R. C., and Conaway, J. W. (1998) The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872–3881.PubMedGoogle Scholar
  163. 161.
    Zhang, J. -G., Farley, A., Nicholson, S. E., Willson, T. A., Zugaro, L. M., Simpson, R. J., et al. (1999) The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc. Natl. Acad. Sci. USA 96, 2071–2076.PubMedCrossRefGoogle Scholar
  164. 162.
    Yokouchi, M., Suzuki, R., Masuhara, M., Komiya, S., Inoue, A., and Yoshimura, A. (1997) Cloning and characterization of APS, an adaptor molecule containing PH and SH2 domains that is tyrosine phosporylated upon B cell receptor stimulation. Oncogene 15, 7–15.PubMedCrossRefGoogle Scholar
  165. 163.
    Wakioka, T., Sasaki, A., Mitsui, K., Yokouchi, M., Inoue, A., Komiya, S., and Yoshimura, A. (1999) APS, an adaptor protein containing Pleckstrin homology (PH) and Src homology-2 (SH2) domains inhibits the JAK-STAT pathway in collaboration with c-Cbl. Leukemia 13, 760–767.PubMedCrossRefGoogle Scholar
  166. 164.
    Rui, L., Mathews, L. S., Hotta, K., Gustafson, T. A., and Carter-Su, C. (1997) Identification of SH2-Bβ as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol. Cell. Biol. 17, 6633–6644.PubMedGoogle Scholar
  167. 165.
    Rui, L. and Carter-Su, C. (1999) Identification of SH2-Bβ as a potent cytoplasmic activator of the tyrosine kinase Janus kinase 2. Proc. Natl. Acad. Sci. USA 96, 7172–7177.PubMedCrossRefGoogle Scholar
  168. 166.
    Bright, J. J., Kerr, L. D., and Sriram, S. (1997) TGF-beta inhibits IL-2-induced tyrosine phosphorylation and activation of Jak-1 and Stat 5 in T lymphocytes. J. Immunol. 159, 175–183.PubMedGoogle Scholar
  169. 167.
    Bright, J. J. and Sriram, S. (1998) TGF-beta inhibits IL-12-induced activation of Jak-STAT pathway in T lymphocytes. J. Immunol. 161, 1772–1777.PubMedGoogle Scholar
  170. 168.
    Sudarshan, C., Galon, J., Zhou, Y., and O’Shea, J. J. (1999) TGF-beta does not inhibit IL-12- and IL-2-induced activation of Janus kinases and STATs. J. Immunol. 162, 2974–2981.PubMedGoogle Scholar
  171. 169.
    Han, H. S., Jun, H. S., Utsugi, T., and Yoon, J. W. (1997) Molecular role of TGF-beta, secreted from a new type of CD4+ suppressor T cell, NY4.2, in the prevention of autoimmune IDDM in NOD mice. J. Autoimmun. 10, 299–307.PubMedCrossRefGoogle Scholar
  172. 170.
    Pardoux, C., Ma, X., Gobert, S., Pellegrini, S., Mayeux, P., Gay, F., Trinchieri, G., and Chouaib, S. (1999) Downregulation of interleukin-12 (IL-12) responsiveness in human T cells by transforming growth factor-beta: relationship with IL-12 signaling. Blood 93, 1448–1455.PubMedGoogle Scholar
  173. 171.
    Pazdrak, K., Justement, L., and Alam, R. (1995) Mechanism of inhibition of eosinophil activation by transforming growth factor-beta. Inhibition of Lyn, MAP, Jak2 kinases and STAT1 nuclear factor. J. Immunol. 155, 4454–4458.PubMedGoogle Scholar
  174. 172.
    Nandan, D. and Reiner, N. E. (1997) TGF-beta attenuates the class II transactivator and reveals an accessory pathway of IFN-gamma action. J. Immunol. 158, 1095–1101.PubMedGoogle Scholar
  175. 173.
    Panek, R. B., Lee, Y. J., and Benveniste, E. N. (1995) TGF-beta suppression of IFN-gamma-induced class II MHC gene expression does not involve inhibition of phosphorylation of JAK1, JAK2, or signal transducers and activators of transcription, or modification of IFN-gamma enhanced factor X expression. J. Immunol. 154, 610–619.PubMedGoogle Scholar
  176. 174.
    Duhé, R. J., Evans, G. A., Erwin, R. A., Kirken, R. A., Cox, G. W., and Farrar, W. L. (1998) Nitric oxide and thiol redox regulation of Janus kinase activity. Proc. Natl. Acad. Sci. USA 95, 126–131.PubMedCrossRefGoogle Scholar
  177. 175.
    Bingisser, R. M., Tilbrook, P. A., Holt, P. G., and Kees, U. R. (1998) Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J. Immunol. 160, 5729–5734.PubMedGoogle Scholar
  178. 176.
    Mills, C. D. (1991) Molecular basis of “suppressor” macrophages. Arginine metabolism via the nitric oxide synthetase pathway. J. Immunol. 146, 2719–2723.PubMedGoogle Scholar
  179. 177.
    Albina, J. E., Abate, J. A., and Henry, W. L., Jr. (1991) Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway. J. Immunol. 147, 144–148.PubMedGoogle Scholar
  180. 178.
    Taylor-Robinson, A. W., Liew, F. Y., Severn, A., Xu, D., McSorley, S. J., Garside, P., Padron, J., and Phillips, R. S. (1994) Regulation of the immune response by nitric oxide differentially produced by T helper type 1 and T helper type 2 cells. Eur. J. Immunol. 24, 980–984.PubMedCrossRefGoogle Scholar
  181. 179.
    Lejeune, P., Lagadec, P., Onier, N., Pinard, D., Ohshima, H., and Jeannin, J. F. (1994) Nitric oxide involvement in tumor-induced immunosuppression. J. Immunol. 152, 5077–5083.PubMedGoogle Scholar
  182. 180.
    Yamauchi, A., Masutani, H., Tagaya, Y., Wakasugi, N., Mitsui, A., Nakamura, H., et al. (1992) Lymphocyte transformation and thiol compounds: the role of ADF/thioredoxin as an endogenous reducing agent. Mol. Immunol. 29, 263–270.PubMedCrossRefGoogle Scholar
  183. 181.
    Iwata, S., Hori, T., Sato, N., Ueda-Taniguchi, Y., Yamabe, T., Nakamura, H., Masutani, H., and Yodoi, J. (1994) Thiol-mediated redox regulation of lymphocyte proliferation. Possible involvement of adult T cell leukemia-derived factor and glutathione in transferrin receptor expression. J. Immunol. 152, 5633–5642.PubMedGoogle Scholar
  184. 182.
    Yamauchi, A. and Bloom, E. T. (1993) Requirement of thiol compounds as reducing agents for IL-2-mediated induction of LAK activity and proliferation of human NK cells. J. Immunol. 151, 5535–5544.PubMedGoogle Scholar
  185. 183.
    Carballo, M., Conde, M., El Bekay, R., Martin-Nieto, J., Camacho, M. J., Monteseirin, J., et al. (1999) Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J. Biol. Chem. 274, 17,580–17,586.Google Scholar
  186. 184.
    Simon, A. R., Rai, U., Fanburg, B. L., and Cochran, B. H. (1998) Activation of the JAK-STAT pathway by reactive oxygen species. Am. J. Physiol 275, C1640-C1652.PubMedGoogle Scholar
  187. 185.
    Fauman, E. B. and Saper, M. A. (1996) Structure and function of the protein tyrosine phosphatases. Trends Biochem. Sci. 21, 413–417.PubMedCrossRefGoogle Scholar
  188. 186.
    Pannifer, A. D., Flint, A. J., Tonks, N. K., and Barford, D. (1998) Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by x-ray crystallography. J. Biol. Chem. 273, 10,454–10,462.CrossRefGoogle Scholar
  189. 187.
    Abe, J. and Berk, B. C. (1999) Fyn and JAK2 mediate Ras activation by reactive oxygen species. J. Biol. Chem. 274, 21,003–21,010.Google Scholar
  190. 188.
    Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244–4250.PubMedGoogle Scholar
  191. 189.
    Levitzki, A. and Gazit, A. (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782–1788.PubMedCrossRefGoogle Scholar
  192. 190.
    Lawrence, D. S. and Niu, J. (1998) Protein kinase inhibitors: the tyrosine-specific protein kinases. Pharmacol. Ther. 77, 81–114.PubMedCrossRefGoogle Scholar
  193. 191.
    Fiorucci, G., Percario, Z. A., Marcolin, C., Coccia, E. M., Affabris, E., and Romeo, G. (1995) Inhibition of protein phosphorylation modulates expression of the Jak family protein tyrosine kinases. J. Virol. 69, 5833–5837.PubMedGoogle Scholar
  194. 192.
    Elder, R. T., Xu, X., Williams, J. W., Gong, H., Finnegan, A., and Chong, A. S. (1997) The immunosuppressive metabolite of leflunomide, A77 1726, affects murine T cells through two biochemical mechanisms. J. Immunol. 159, 22–27.PubMedGoogle Scholar
  195. 193.
    Siemasko, K., Chong, A. S., Jack, H. M., Gong, H., Williams, J. W., and Finnegan, A. (1998) Inhibition of JAK3 and STAT6 tyrosine phosphorylation by the immunosuppressive drug leflunomide leads to a block in IgG1 production. J. Immunol. 160, 1581–1588.PubMedGoogle Scholar
  196. 194.
    Wasik, M. A., Nowak, I., Zhang, Q., and Shaw, L. M. (1998) Suppression of proliferation and phosphorylation of Jak3 and STAT5 in malignant T-cell lymphoma cells by derivatives of octylamino-undecyl-dimethylxanthine. Leuk. Lymphoma 28, 551–560.PubMedGoogle Scholar
  197. 195.
    Osherov, N., Gazit, A., Gilon, C., and Levitzki, A. (1993) Selective inhibition of the epidermal growth factor and HER2/neu receptors by tyrphostins. J. Biol. Chem. 268, 11,134–11,142.Google Scholar
  198. 196.
    Sharfe, N., Dadi, H. K., and Roifman, C. M. (1995) JAK3 protein tyrosine kinase mediates interleukin-7-induced activation of phosphatidylinositol-3′ kinase. Blood 86, 2077–2085.PubMedGoogle Scholar
  199. 197.
    Ali, M. S., Sayeski, P. P., Safavi, A., Lyles, M., and Bernstein, K. E. (1998) Janus kinase 2 (JAK2) must be catalytically active to associate with the AT1 receptor in response to angiotensin II. Biochem. Biophys. Res. Commun. 249, 672–677.PubMedCrossRefGoogle Scholar
  200. 198.
    Miike, S., Nakao, A., Hiraguri, M., Kurasawa, K., Saito, Y., and Iwamoto, I. (1999) Involvement of JAK2, but not PI 3-kinase/Akt and MAP kinase pathways, in anti-apoptotic signals of GM-CSF in human eosinophils. J. Leukoc. Biol. 65, 700–706.PubMedGoogle Scholar
  201. 199.
    Simon, H. -U., Yousefi, S., Dibbert, B., Levi-Schaffer, F., and Blaser, K. (1997) Anti-apoptotic signals of granulocyte-macrophage colony-stimulating factor are transduced via Jak2 tyrosine kinase in eosinophils. Eur. J. Immunol. 27, 3536–3539.PubMedCrossRefGoogle Scholar
  202. 200.
    Kirken, R. A., Erwin, R. A., Taub, D., Murphy, W. J., Behbod, F., Wang, L., Pericle, F., and Farrar, W. L. (1999) Tyrphostin AG-490 inhibits cytokine-mediated JAK3/STAT5a/b signal transduction and cellular proliferation of antigen-activated human T cells. J. Leukoc. Biol. 65, 891–899.PubMedGoogle Scholar
  203. 201.
    Wang, L. H., Kirken, R. A., Erwin, R. A., Yu, C. R., and Farrar, W. L. (1999) JAK3, STAT, and MAPK signaling pathways as novel molecular targets for the tyrphostin AG-490 regulation of IL-2-mediated T cell response. J. Immunol. 162, 3897–3904.PubMedGoogle Scholar
  204. 202.
    Bright, J. J., Du, C., and Sriram, S. (1999) Tyrphostin B42 inhibits IL-12-induced tyrosine phosphorylation and activation of Janus kinase-2 and prevents experimental allergic encephalomyelitis. J. Immunol. 162, 6255–6262.PubMedGoogle Scholar
  205. 203.
    Nielsen, M., Kaltoft, K., Nordahl, M., Röpke, C., Geisler, C., Mustelin, T., et al. (1997) Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoldes: Tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc. Natl. Acad. Sci. USA 94, 6764–6769.PubMedCrossRefGoogle Scholar
  206. 204.
    Constantin, G., Brocke, S., Izikson, A., Laudanna, C., and Butcher, E. C. (1998) Tyrphostin AG490, a tyrosine kinase inhibitor, blocks actively induced experimental autoimmune encephalomyelitis. Eur. J. Immunol. 28, 3523–3529.PubMedCrossRefGoogle Scholar
  207. 205.
    Constantin, G., Laudanna, C., Brocke, S., and Butcher, E. C. (1999) Inhibition of experimental autoimmune encephalomyelitis by a tyrosine kinase inhibitor. J. Immunol. 162, 1144–1149.PubMedGoogle Scholar
  208. 206.
    Goodman, P. A., Niehoff, L. B., and Uckun, F. M. (1998) Role of tyrosine kinases in induction of the c-jun proto-oncogene in irradiated B-lineage lymphoid cells. J. Biol. Chem. 273, 17742–17748.PubMedCrossRefGoogle Scholar
  209. 207.
    Sudbeck, E. A., Liu, X. P., Narla, R. K., Mahajan, S., Ghosh, S., Mao, C., and Uckun, F. M. (1999) Structure-based design of specific inhibitors of Janus kinase 3 as apoptosis-inducing antileukemic agents. Clin. Cancer Res. 5, 1569–1582.PubMedGoogle Scholar
  210. 208.
    Uckun, F. M., Ek, O., Liu, X. P., and Chen, C. L. (1999) In vivo toxicity and pharmacokinetic features of the janus kinase 3 inhibitor WHI-P131 [4-(4′hydroxyphenyl)-amino-6,7-dimethoxyquinazoline. Clin. Cancer Res. 5, 2954–2962.PubMedGoogle Scholar
  211. 209.
    Malaviya, R. and Uckun, F. M. (1999) Genetic and biochemical evidence for a critical role of Janus kinase (JAK)-3 in mast cell-mediated type I hypersensitivity reactions. Biochem. Biophys. Res. Commun. 257, 807–813.PubMedCrossRefGoogle Scholar
  212. 210.
    Malaviya, R., Zhu, D., Dibirdik, I., and Uckun, F. M. (1999) Targeting Janus kinase 3 in mast cells prevents immediate hypersensitivity reactions and anaphylaxis. J. Biol. Chem. 274, 27,028–27,038.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2001

Authors and Affiliations

  • Roy J. Duhé
    • 1
  • Li Hua Wang
    • 2
  • William L. Farrar
    • 2
  1. 1.Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJackson
  2. 2.Cytokine Molecular Mechanisms Section, Laboratory of Molecular ImmunoregulationNational Cancer Institute-Frederick Cancer Research and Development CenterFrederick

Personalised recommendations