Peroxisome proliferator-activated receptors, coactivators, and downstream targets

  • Chao Qi
  • Yijun Zhu
  • Janardan K. Reddy
Part IV Peroxisome Proliferator-Activated Receptors


Peroxisomes in liver parenchymal cells proliferate in response to structurally diverse nonmutagenic compounds designated as peroxisome proliferators (PP). Sustained induction of peroxisome proliferation and peroxisomal fatty acid β-oxidation system in rats and mice leads to the development of liver tumors. Two mechanistic issues are important for consideration: elucidation of the upstream events responsible for the tissue and species specific induction of the characteristic pleiotropic responses by PPs; and delineation of the downstream events associated with peroxisome proliferation, and their role in the development of liver tumors in species that are sensitive to the induction of peroxisome proliferation. The induction of peroxisome proliferation is mediated by PP-activated receptor α (PPARα), a member of a group of transcription factors that regulate the expression of genes associated with lipid metabolism and adipocyte differentiation. Three isotypes of this family of nuclear receptors, namely PPARα, PPARγ, and PPARδ (also called β), have been identified as products of separate genes. Although PPARα is responsible for the PP-induced pleiotropic responses, PPARγ seems to be involved in adipogenesis and differentiation, but the events associated with PPARγ do not directly involve peroxisomes and peroxisome proliferation. PPARs heterodimerize with 9-cis retinoic acid receptor (RXR), and bind to PP response element(s) (PPREs) on the target gene promoter to initiate inducible transcriptional activity. Tissue and species responses to PPs depend on pharmacokinetics, relative abundance of PPAR isotypes, nature of PPRE in the upstream regions of target genes, the extent of competition or cross-talk among nuclear transcription factors for PPAR heterodimerization partner retinoid X receptor and the modulating role of coactivators and corepressors on ligand-dependent transcription of PPARs. Using PPAR as bait in the yeast two-hybrid system, the authors recently cloned mouse steroid receptor coactivator-1 (SRC-1) and PPAR-binding protein (PBP), and identified them as PPAR coactivators. Both SRC-1 and PBP contain LXXLL signature motifs, considered necessary and sufficient for the binding of coactivators to nuclear receptors. A multifaceted approach, which includes the identification of additional coactivators that may be responsible for cell specific transcriptional activation of PPAR-mediated target genes, and generation of genetically modified animals (transgenic and gene disrupted), will be necessary to gain more insight into the upstream and downstream targets responsible for the induction of early and delayed PP-induced pleiotropic responses. In this context, it is important to note that mice deficient in fatty acyl-CoA oxidase, the first and rate-limiting enzyme of the peroxisomal β-oxidation system, revealed that this enzyme is indispensable for the physiological regulation of PPARα, and the absence of this enzyme leads to sustained transcriptional activation of genes regulated by this receptor.

Index Entries

Peroxisome proliferation peroxisome proliferator(s) (PP) peroxisomal fatty acid β-oxidation system peroxisome proliferator-activated receptor α (PPARα) PP response element(s) (PPREs) 


  1. 1.
    DeDuve, C. and Baudhuin, P. (1966) Microbodies (peroxisomes) and related particles. Physiol. Rev. 46, 323–357.Google Scholar
  2. 2.
    Tolbert, N. E. (1981) Metabolic pathways in peroxisomes and glyoxysomes. Annu. Rev. Biochem. 50, 133–57.PubMedCrossRefGoogle Scholar
  3. 3.
    Reddy J. K. and Mannaerts, G. P. (1994) Peroxisomal lipid metabolism. Annu. Rev. Nutr. 14, 343–370.PubMedCrossRefGoogle Scholar
  4. 4.
    Reddy, J. K. and Krishnakantha, T. P. (1975) Hepatic peroxisome proliferation: Induction by two novel compounds structurally unrelated to clofibrate. Science 200, 787–789.CrossRefGoogle Scholar
  5. 5.
    Reddy, J. K. and Lalwani, N. D. (1983) Carcinogenesis by hepatic peroxisome proliferators: evaluation of the risk of hypolipidemic drugs and industrial plasticizers to human. CRC Crit. Rev. Toxicol. 12, 1–58.Google Scholar
  6. 6.
    Reddy, J. K., Rao, M. S., and Moody, D. E. (1976) Hepatocellular carcinomas in acatalasemic mice treated with nafenopin, a hypolipidemic peroxisome proliferator. Cancer Res. 36, 1211.PubMedGoogle Scholar
  7. 7.
    Reddy, J. K., Azarnoff, D. L., and Hignite, C. F. (1980) Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature 283, 397–398.PubMedCrossRefGoogle Scholar
  8. 8.
    Reddy, J. K., Goel, S. K., Nemali, M. R., Carrino, J. J., Laffler, T. G., Reddy, M. K., et al. (1986) Transcriptional regulation of peroxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in rat liver by peroxisome proliferators. Proc. Natl. Acad. Sci. USA 83, 1747–1751.PubMedCrossRefGoogle Scholar
  9. 9.
    Aoyama, T., Hardwick, J. P., Imaoka, S., Funae, Y., Gelboin, H. V., and Gonzalez, F. J. (1990) Clofibrate-inducible rat hepatic P450IVA1 and IVA3 catalyze the omega- and (omega-1)-hydroxylation of fatty acids and the omega-hydroxylation of prostaglandins E1 and F. J. Lipid Res. 31, 1477–1482.PubMedGoogle Scholar
  10. 10.
    Muerhoff, A. S., Griffin, K. J., and Johnson E. F. (1992) The peroxisome proliferator activated receptor mediates the induction of CYP4A6, a cytochrome P450 fatty acid omegahydroxylase, by clofibric acid. J. Biol. Chem. 267, 19051–19053.PubMedGoogle Scholar
  11. 11.
    Kaikaus, R. M., Chan, W. K., Lysenko, N., Ray, R., Ortiz de Montellano, P. R., and Bass, N. M. (1993) Induction of peroxisomal fatty acid β-oxidation and liver fatty acid-binding protein by peroxisome proliferators: mediation via the cytochrome P-450IVA1 ω-hydroxylase pathway., J. Biol. Chem. 268, 9593–9603.PubMedGoogle Scholar
  12. 12.
    Gulick, T., Cresci, S., Caira, T., Moore, D. D., and Kelly, D. P. (1994) The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc. Natl. Acad. Sci. USA 91, 11012–11016.PubMedCrossRefGoogle Scholar
  13. 13.
    Reddy, J. K. and Rao, M. S. (1986) Peroxisome proliferators and cancer; mechanisms and implications. Trends Pharmacol. Sci. 7, 438–443.CrossRefGoogle Scholar
  14. 14.
    Reddy, J. K. and Rao, M. S. (1987) Peroxisome proliferation-related oxidative stress and hepatocarcinogenesis, in Anticarcinogenesis and Radiation Protection (Cerutti, P. A., Nygaard, O. F., Simic, M. G., eds.) Plenum, New York, pp. 85–91.Google Scholar
  15. 15.
    Lalwani, N. D., Fahl, W. E., and Reddy, J. K. (1983) Detection of nafenopin binding protein in rat liver cytosol associated with the induction of peroxisome proliferation by hypolipidemic compounds. Biochem. Biophys. Res. Commun. 116, 388–393.PubMedCrossRefGoogle Scholar
  16. 16.
    Lalwani, N. D., Alvares K., Reddy, M. K., Reddy, M. N., Parikh, I., and Reddy, J. K. (1987) Peroxisome proliferator binding protein: identification and partial characterization of nafenopin, clofibric acid and ciprofibrate binding proteins from rat liver. Proc. Natl. Acad. Sci. USA 84, 5142–5246.CrossRefGoogle Scholar
  17. 17.
    Alvares, K, Carrillo, A., Yuan, P. M., Kawano, H., Morimoto, R. I., and Reddy, J. K. (1990) Identification of peroxisome proliferator binding protein as a member of HSP70 protein family, Proc. Natl. Acad. Sci. USA 87, 5293–5297.PubMedCrossRefGoogle Scholar
  18. 18.
    Issemann, I. and Green, S. (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645–650.PubMedCrossRefGoogle Scholar
  19. 19.
    Dreyer, C., Krey, G., Keller, H., Givel, F., Helftenbein, G., and Wahli, W. (1992) Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68, 879–887.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhu, Y., Alvares, K., Huang, Q., Rao, M. S., and Reddy, J. K. (1993) Cloning of a new member of peroxisome proliferator activated receptor gene family from mouse, liver. J. Biol. Chem. 268, 26817–26820.PubMedGoogle Scholar
  21. 21.
    Sher, T., Yi, H. F., McBride, W., and Gonzalez F. J. (1993) cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry 32, 5598–5604.PubMedCrossRefGoogle Scholar
  22. 22.
    Kliewer, S. A., Forman, B. M., Blumberg, B., Ong, E. S., Borgmeyer, U., Mangelsdorf, D. J., Umesono, K., and Evans, R. M. (1994) Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. USA 91, 7355–7359.PubMedCrossRefGoogle Scholar
  23. 23.
    Lee, S. S.-T. Pineau, T., Drago, J., Lee, E. J., Owens, J. W., Kroetz, D. L., et al. (1995) Targeted disruption of the isoform of the peroxisomal proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol. Cell. Biol. 15, 3012–3022.PubMedGoogle Scholar
  24. 24.
    Chatterjee, B., Demyan, W. F., Lalwani, N. D., Reddy, J. K., and Roy, A. K. (1983) Reversible alteration of hepatic messenger RNAs for peroxisomal and non-peroxisomal proteins induced by hypolipidemic drug Wy-14,643. Biochem. J. 241, 879–883.Google Scholar
  25. 25.
    Huang, Q., Alvares, K., Chu, R., Bradfield, C. A., and Reddy, J. K. (1994) Association of peroxisome-proliferator-activated receptor and HSP72. J. Biol. Chem. 269, 8493–8497.PubMedGoogle Scholar
  26. 26.
    Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., et al. (1995) The nuclear receptor superfamily: the second decade. Cell 83, 835–839.PubMedCrossRefGoogle Scholar
  27. 27.
    Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I., and Spiegelman, B. M. (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224–1234.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhu, Y., Qi, C., Korenberg, J. R., Chen, Z.-N., Noya, D., Rao, M. S., and Reddy, J. K. (1995) Structural organization of mouse peroxisome proliferator-activated receptorγ (mPPARγ) gene: alternative promoter use and different splicing yield two mPPARγ isoforms. Proc. Natl. Acad. Sci. USA 92, 7921–7925.PubMedCrossRefGoogle Scholar
  29. 29.
    Danielian, P. S., White, R., Lees, J. A., and Parker, M. G. (1992) Identification of a conserved region required for hormone-dependent transcriptional activation by steroid hormone receptors. EMBO J. 11, 1025–1033.PubMedGoogle Scholar
  30. 30.
    Kliewer, S. A., Umesono, K., Noonan, D. J., Heyman, R. A., and Evans, R. M. (1992) Convergence of 9-cis-retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature (London) 358, 771–774.CrossRefGoogle Scholar
  31. 31.
    Palmer, C. N. A., Hsu, M.-H., Griffin, K. J., Johnson, and Johnson,E. F. (1995) Novel sequence determinants in peroxisome proliferator signaling. J. Biol. Chem. 270, 16114–16121.PubMedCrossRefGoogle Scholar
  32. 32.
    Reddy, J. K. and Chu, R. (1996) Peroxisome proliferator-induced pleiotropic responses: Pursuit of a phenomenon. Ann. New York Acad. Sci. 804, 176–201.CrossRefGoogle Scholar
  33. 33.
    Chu, R., Lin, Y., Rao, M. S., and Reddy, J. K. (1995) Cooperative formation of higher order peroxisome proliferator-activated receptor and retinoid X receptor complexes on the peroxisome proliferator responsive element of the rat hydratase-dehydrogenase gene. J. Biol. Chem. 270, 29636–29639.PubMedCrossRefGoogle Scholar
  34. 34.
    Nemali, M. R., Reddy M. K., Usuda, N., Reddy, P. G., Comeau, L. D., Rao, M. S., and Reddy, J. K. (1989) Differential induction and regulation of peroxisomal enzymes: predictive value of peroxisomal proliferation in identifying certain nonmutagenic carcinogens. Toxicol. Appl. Pharmacol. 97, 72–87.PubMedCrossRefGoogle Scholar
  35. 35.
    Krey, G., Braissant, O., L'Horset, F., Kalkhoven, E., Perroud, M., Parker, M. G., and Wahli, W. (1997) Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Endocrinology 11, 779–791.CrossRefGoogle Scholar
  36. 36.
    Forman, B. M., Chen, J., and Evans, R. M. (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and β. Proc. Natl. Acad. Sci. USA 94, 4312–4317.PubMedCrossRefGoogle Scholar
  37. 37.
    Kliewer, S. A., Sundseth, S. S. Jones, S. A., Brown, P. J., Wisely, G. B., Koble, C. S., et al. (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc. Natl. Acad. Sci. USA 94, 4318–4323.PubMedCrossRefGoogle Scholar
  38. 38.
    Fan, C.-Y., Pan, J., Usuda, N., Yeldandi, A. V., Rao, M. S., and Reddy, J. K. (1998) Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. J. Biol. Chem. 273, 15639–15645.PubMedCrossRefGoogle Scholar
  39. 39.
    Mosser, J., Lutz, Y., Stoeckel, M. E., Sarde, C. O., Kretz, C., Douar, A. M., Lopez, J., Aubourg, P., and Mandel J. L. (1994) The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Hum. Mol. Genet. 2, 285–271.Google Scholar
  40. 40.
    Lu, J.-F., Lawler, A. M., Watkins, P. A., Powers, J. M., Moser, A. B., Moser, H. W., and Smith, K. D. (1997) A mouse model for X-linked adrenoleukodystrophy. Proc. Natl. Acad. Sci. USA 94, 9366–9371.PubMedCrossRefGoogle Scholar
  41. 41.
    Kobayashi, T., Shinonoh, N., Kondo, A., and Yamada, T. (1997) Adrenoleukodystrophy protein deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem. Biophys. Res. Commun. 232, 631–636.PubMedCrossRefGoogle Scholar
  42. 42.
    Tontonoz, P., Hu, E., and Spiegelman, B. M. (1994) Stimulation of adipogenesis in fibroblasts by PPAR_2, a lipid-activated transcription factor. Cell 79, 1147–1156.PubMedCrossRefGoogle Scholar
  43. 43.
    Mansen, A., Guardiola-Diaz, H., Rafter, J., Branting, C., and Gustafsson, J.-A. (1996) Expression of the peroxisome proliferator-activated receptor (PPAR) in the mouse colonic mucosa. Biochem. Biophys. Res. Commun. 222, 844–851.PubMedCrossRefGoogle Scholar
  44. 44.
    Braissant, O., Foufelle, F., Scotto, C., Dauca, M., and Wahli, W. (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-α,-β, and-γ in the adult rat. Endocrinology 137, 354–366.PubMedCrossRefGoogle Scholar
  45. 45.
    Jain, S., Pulikuri, S., Zhu, Y., Qi, C., Kanwar, Y. S., Yeldandi, A. V., Rao, M. S., and Reddy, J. K. (1998) Differential expression of the peroxisome proliferator-activated receptorγ (PPARα) and its coactivators steroid receptor coactivator-1 and PPAR-binding protein PBP in the brown fat, urinary bladder, colon, and breast of the mouse. Amer. J. Pathol. 153, 349–354.Google Scholar
  46. 46.
    Guan, Y., Zhang, Y., Davis, L., and Breyer, M. D. (1997) Expression of peroxisome proliferator-activated receptors in urinary tract of rabbits and humans. Am. J. Physiol. 273, F1013-F1022.PubMedGoogle Scholar
  47. 47.
    Gottlicher, M., Widmark, K., Li, Q., and Gustafsson, J. A. (1992) Fatty acids activate chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 89, 4653–4657.PubMedCrossRefGoogle Scholar
  48. 48.
    Forman, B. M., Tontonoz, P., Chen, J., Brun, R. P., Spiegelman, B. M, and Evans, R. M. (1995) 15-Deoxy-12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR. Cell 83, 803–812.PubMedCrossRefGoogle Scholar
  49. 49.
    Kliewer, S. A., Lenhard, J. M., Willson, T. M., Patel, I., Morris, D. C., and Lehmann, J. M. (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83, 813–819.PubMedCrossRefGoogle Scholar
  50. 50.
    Lehmann, J. M., Lenhard, J. M., Oliver, B. B., Ringold, G. M., and Kliewer, S. A. (1997) Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272, 3406–3410.PubMedCrossRefGoogle Scholar
  51. 51.
    Huang, Q., Yeldandi, A. V., Alvares, K., Ide, H., Reddy, J. K., and Rao, M. S. (1995) Localization of peroxisome proliferator-activated receptor in mouse and rat tissues and demonstration of its nuclear translocation in transfected CV-1 cells. Int. J. Oncol. 6, 307–312.Google Scholar
  52. 52.
    Tontonoz, P., Singer, S., Forman, B., Sarraf, P., Fletcher, J., Fletcher, C. D. M., et al. (1997) Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor γ and the retinoid X receptor. Proc. Natl. Acad. Sci. USA. 94, 237–241.PubMedCrossRefGoogle Scholar
  53. 53.
    Sarraf, P., Mueller, E., Jones, D., King, F. J., DeAngelo, D. J., Partridge, J. B., et al. (1998) Differentiation and reversal of malignant changes in colon cancer through PPARγ. Nature Med. 4, 1046–1052.PubMedCrossRefGoogle Scholar
  54. 54.
    Glass, C. K., Rose, D. W., and Rosenfeld, M. G. (1997) Nuclear receptor coactivators. Curr. Opin. Cell Biol. 9, 222–232.PubMedCrossRefGoogle Scholar
  55. 55.
    Onate, S. A., Tsai, S. Y., Tsai, M.-J., and O'Malley, B. W. (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357.PubMedCrossRefGoogle Scholar
  56. 56.
    Voegel, J. J., Heine, M. J. S., Zechel, C., Chambon, P., and Gronemeyer, H. (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15, 3667–3675.PubMedGoogle Scholar
  57. 57.
    Torchia, J., Rose, D. W., Inostroza, J., Kamei, Y., Westin, S., Glass, C. K., and Rosenfeld, M. G. (1997) The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677–684.PubMedCrossRefGoogle Scholar
  58. 58.
    Hong, H., Kohli, K., Trivedi, A., Johnson, D. L., and Stallcup, M. R. (1996) GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc. Natl. Acad. Sci. USA 93, 4948–4952.PubMedCrossRefGoogle Scholar
  59. 59.
    Chen, H., Lin, R. J., Schiltz, R. L., Chakravarti, D., Nash, A., Nagy, L., et al. (1997) Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569–580.PubMedCrossRefGoogle Scholar
  60. 60.
    Anzick, S. L., Kononen, J., Walker, R. L., Azorsa, D. O., Tanner, M. M., Guan, X. Y., et al. (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277, 965–968.PubMedCrossRefGoogle Scholar
  61. 61.
    Li, H., Gomes, P. J., and Chen, J. D. (1997) RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc. Natl. Acad. Sci. USA 94, 8479–8484.PubMedCrossRefGoogle Scholar
  62. 62.
    Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., et al. (1996) A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhu, Y., Qi, C., Jain, S., Rao, M. S., and Reddy, J. K. (1997) Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J. Biol. Chem. 272, 25,500–25,506.Google Scholar
  64. 64.
    Yuan, C.-X., Ito, M., Fondell, J. D., Fu, Z.-Y., and Roeder, R. G. (1998) The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc. Natl. Acad. Sci. USA 95, 7939–7944.PubMedCrossRefGoogle Scholar
  65. 65.
    Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M., and Spiegelman, B. M. (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839.PubMedCrossRefGoogle Scholar
  66. 66.
    Yeh, S. and Chang, C. (1997) Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl. Acad. Sci. USA 93, 5517–5521.CrossRefGoogle Scholar
  67. 67.
    Zhu, Y., Qi, C., Calandra, C., Rao, M. S., and Reddy, J. K. (1996) Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor γ. Gene Express. 6, 185–195.Google Scholar
  68. 68.
    Yao, T.-P., Ku, G., Zhou, N., Scully, R., and Livingston, D. M. (1996) The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl. Acad. Sci. USA 93, 10626–10631.PubMedCrossRefGoogle Scholar
  69. 69.
    Takeshita, A., Yen, P. M., Misiti, S., Cardona, G. R., Liu, Y., and Chin, W. W. (1996) Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator. Endocrinology 137, 3594–3597.PubMedCrossRefGoogle Scholar
  70. 70.
    Heery, D. M., Kalkhoven, E., Hoare, S., and Parker, M. G. (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736.PubMedCrossRefGoogle Scholar
  71. 71.
    Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y. (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959.PubMedCrossRefGoogle Scholar
  72. 72.
    Brownell, J. E. and Allis, C. D. (1996) Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev. 6, 176–184.PubMedCrossRefGoogle Scholar
  73. 73.
    Chakravarti, D., LaMorte, V. J., Nelson, M. C., Nakajima, T., Schulman, I. G., Juguilon, H., Montminy, M., and Evans, R. M. (1996) Role of CBP/P300 in nuclear receptor signalling. Nature 383, 99–102.PubMedCrossRefGoogle Scholar
  74. 74.
    Dowell, P., Ishmael, J. E., Avram, D., Peterson, V. J., Nevrivy, D. J., and Leid, M. (1997) p300 Functions as a coactivator for the peroxisome proliferator-activated receptor α. J. Biol. Chem. 272, 33435–33443.PubMedCrossRefGoogle Scholar
  75. 75.
    Mizukami, J. and Taniguchi, T. (1997) The antidiabetic agent thiazolidinedione stimulates the interaction between PPAR and CBP. Biochem. Biophys. Res. Commun. 240, 61–64.PubMedCrossRefGoogle Scholar
  76. 76.
    Cavailles, V., Dauvois, S., L'Horset, F., Lopez, G., Hoare, S., Kushner, P. J., and Parker, M. G. (1995) Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 14, 3741–3751.PubMedGoogle Scholar
  77. 77.
    Treuter, E., Albrektsen, T., Johnasson, L., Leers, J., and Gustafsson, J.-A. (1998) A regulator role for RIP140 in nuclear receptor activation. Mol. Endocrinol. 12, 864–881.PubMedCrossRefGoogle Scholar
  78. 78.
    Chu, R., Lin, Y., Rao, M. S., and Reddy, J. K. (1996) Cloning and identification of rat deoxyuridine triphosphatase as an inhibitor of peroxisome proliferator-activated receptor α. J. Biol. Chem. 271, 27670–27675.PubMedCrossRefGoogle Scholar
  79. 79.
    Brun, R. P., Kim, J. B., Hu, E., and Spiegelman, B. M. (1997) Peroxisome proliferator-activated receptor gamma and the control of adipogenesis. Curr. Opin. Lipid. 8, 212–218.CrossRefGoogle Scholar
  80. 80.
    Schoonjans, K., Staels, B., and Auwerx, J. (1996) The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta 1302, 93–109.PubMedGoogle Scholar
  81. 81.
    Hashimoto, T. (1982) Individual peroxisomal β-oxidation enzymes. Ann. NY Acad. Sci. 386, 5–12.PubMedCrossRefGoogle Scholar
  82. 82.
    Martin, G., Schoonjans, K., Lefebvre, A.-M., Staels, B., and Auwerx, J. (1997) Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARα and PPARγ activators. J. Biol. Chem. 272, 28210–28217.PubMedCrossRefGoogle Scholar
  83. 83.
    Ren, B., Thelen, A. P., Peters, J. M., Gonzalez, F. J., and Jump, D. B. (1997) Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S14 gene expression does not require peroxisome proliferator-activated receptor alpha. J. Biol. Chem. 272, 26827–26832.PubMedCrossRefGoogle Scholar
  84. 84.
    Warren, J. R., Simmon, V. F., and Reddy, J. K. (1980) Properties of hypolipidemic peroxisome proliferators in the lymphocyte [3H]-thymidine and salmonella mutagenesis assays. Cancer Res. 40, 36–41.PubMedGoogle Scholar
  85. 85.
    Rao, M. S. and Reddy, J. K. (1996) Hepatocarcinogenicity of peroxisome proliferators. Ann. NY Acad. Sci. 804, 573–587, 1996.PubMedCrossRefGoogle Scholar
  86. 86.
    Ashby, J., Brady, A., Elcombe, C. R., Elliot, B. M., Ishmael, J., Odum, J., Tugwood, J. M., Kettle, S., and L. F. H. Purchase. (1994) Mechanistically-based human hazard assessment of peroxisome proliferator-induced hepatocar-cinogenesis. Hum. Exp. Toxicol. 13(Suppl. 2), S1-S117.PubMedCrossRefGoogle Scholar
  87. 87.
    Rao, M. S. and Reddy, J. K. (1987) Peroxisome proliferation and hepatocarcinogenesis. Carcinogenesis 8, 631–636.PubMedCrossRefGoogle Scholar
  88. 88.
    Lazarow, P. B. and deDuve, C. (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes: Enhancement by clofibrate, a hypolipidemic drug. Proc. Natl. Acad. Sci. USA 73, 2043–2046.PubMedCrossRefGoogle Scholar
  89. 89.
    Chu, S., Huang, Q., Alvares, K., Yeldandi, A. V., Rao, M. S., and Reddy, J. K. (1995) Transformation of mammalian cells by overexpressing H2O2-generating peroxisomal fatty acyl-CoA oxidase. Proc. Natl. Acad. Sci. USA 92, 7080–7084.PubMedCrossRefGoogle Scholar
  90. 90.
    Dadras, S. S., Thorgeirsson, S. S., Rao, M. S., and Reddy, J. K. (1998) Implication of hydrogen peroxide generation and apoptosis in the neoplastic transformation of mouse fibroblasts overexpressing peroxisomal fatty acyl-CoA oxidase. Int. J. Oncol. 12, 37–44.PubMedGoogle Scholar
  91. 91.
    Okamoto, M., Reddy, J. K., and Oyasu, R. (1997) Tumorigenic conversion of a nontumorigenic rat urothelial cell line by overexpression of H2O2-generating peroxisomal fatty acyl-CoA oxidase. Int. J. Cancer 70, 716–721.PubMedCrossRefGoogle Scholar
  92. 92.
    Chu, R., Madison, L. D., Lin, Y., Kopp, P., Rao, M. S., Jameson, J. L., and Reddy, J. K. (1995) Thyroid hormone (T3) inhibits ciprofibrate-induced transcription of genes encoding β-oxidation enzymes: cross talk between peroxisome proliferator and T3 signaling pathways. Proc. Natl. Acad. Sci. USA 92, 11593–11597.PubMedCrossRefGoogle Scholar
  93. 93.
    Juge-Aubry, C. E., Gorla-Bajszczak, A., Pernin, A., Lemberger, T., Wahli, W., Burger, A. G., and Meier, C. A. (1995) Peroxisome proliferator-activated receptor mediates cross-talk with thyroid hormone receptor by competition for retinoid X receptor. J. Biol. Chem. 270, 18,117–18,122.Google Scholar
  94. 94.
    Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., and Glass, C. K. (1998) The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391, 79–82.PubMedCrossRefGoogle Scholar
  95. 95.
    Nagy, L., Tontonoz, P., Alvarez, J. G. A., Chen, H., and Evans, R. M. (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell 93, 229–240.PubMedCrossRefGoogle Scholar
  96. 96.
    Tontonoz, P., Nagy, L., Alvarez, J. G. A., Thomazy, V. A., and Evans, R. M. (1998) PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93, 241–252.PubMedCrossRefGoogle Scholar
  97. 97.
    Wu, Z., Xie, Y., Bucher, N. L., and Farmer, S. R. (1995) Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev 9, 2350–2363.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, Inc. 2000

Authors and Affiliations

  • Chao Qi
    • 1
  • Yijun Zhu
    • 1
  • Janardan K. Reddy
    • 1
  1. 1.Department of PathologyNorthwestern University Medical SchoolChicago

Personalised recommendations