Biological Trace Element Research

, Volume 99, Issue 1–3, pp 241–253 | Cite as

New experimental observation on the relationship of selenium and diabetes mellitus

  • Xi-Qun Sheng
  • Kai-Xun Huang
  • Hui-Bi Xu


Selenium shows insulin-mimic properties in vitro and in vivo. However, in this study, a high dose of 4 mg/kg/d selenite orally administered to the alloxan-induced diabetic Kun-Ming mice for 4 wk failed to reduce hyperglycemia. Se contents in plasma and tissues such as the liver, kidney, spleen, and brain were determined and the thiobarbituric acid-reactive substances (TBARS) levels were investigated. The results showed that alloxan-induced diabetes did not cause a significant decrease in Se levels in plasma and the above tissues compared to the normal control, but selenite treatment significantly increased Se levels in plasma, liver, and brain of the selenite-treated diabetic mice compared to the nontreated diabetic mice. In addition, selenite treatment for diabetic mice reduced the TBARS levels in red blood cells (RBCs) compared to the normal and improved the glutathione peroxidase (GSH-Px) levels in RBCs significantly compared to the diabetic control. In conclusion, this study demonstrated that although oral administration of a high dose of selenite had no hypoglycemic effect on diabetic mice in 4 wk, selenite treatment still maintained the antioxidant beneficial effect on the diabetic mice. This study shed more light on the relationship between Se and diabetes.

Index Entries

Selenite diabetes Se level lipid peroxidation GSH-Px 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. Chen, G. Yang, J. Chen, et al., Studies on the relations of selenium and Keshan disease, Biol. Trace Element Res. 2, 91–107 (1980).Google Scholar
  2. 2.
    H. Xu and K. Huang, Selenium: Its Chemistry, Biochemistry and Application in Life Science, Publishing Press of HUST, Beijing, pp. 104–139 (1994).Google Scholar
  3. 3.
    O. Ezaki, The insulin-like effects of sodium selenate in rat adipocytes, J. Biol. Chem. 265, 1124–1128 (1990).PubMedGoogle Scholar
  4. 4.
    J. H. McNeill, H. L. M. Delgatty, and M. L. Battell, Insulinlike effects of sodium selenate in streptozotocin diabetic rats, Diabetes 40, 1675–1678 (1991).CrossRefPubMedGoogle Scholar
  5. 5.
    R. Ghosh, B. Mukherjee, and M. Chatterjee, A novel effect of selenium on streptozotocin-induced diabetic mice, Diabetes Res. 25, 165–171 (1994).PubMedGoogle Scholar
  6. 6.
    D. J. Becker, B. Reul, A. T. Ozcelikay, et al., Oral selenate improves glucose homeostasis and partly reverses abnormal expression of liver glycolytic and gluconeogenic enzymes in diabetic rats, Diabetologia 39, 3–11 (1996).CrossRefPubMedGoogle Scholar
  7. 7.
    H. Xu, K. Huang, Y. Zhu, et al., Hypoglycemic effect of a novel insulin buccal formulation on rabbits, Pharmacol. Res. 46, 459–467 (2002).CrossRefPubMedGoogle Scholar
  8. 8.
    M. L. Battell, H. L. M. Delgatty, and J. H. McNeill, Sodium selenate corrects glucose tolerance and heart function in STZ diabetic rats, Mol. Cell. Biochem. 179, 27–34 1998.CrossRefPubMedGoogle Scholar
  9. 9.
    J. H. Wathinson, Fluorometric determination of selenium in biological material with 2,3-diaminonapaphthalene, Anal. Chem. 38, 92–96 (1966).CrossRefGoogle Scholar
  10. 10.
    Z. A. Placer, L. Cushman, and B. C. Johnson, Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems, Anal. Biochem. 16, 359–364 (1966).CrossRefPubMedGoogle Scholar
  11. 11.
    M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein, Anal. Biochem. 72, 248–258 (1974).CrossRefGoogle Scholar
  12. 12.
    D. G. Hafeman, R. A. Sunde, and W. G. Hoekstra, Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat, J. Nutr. 104, 580–587 (1974).PubMedGoogle Scholar
  13. 13.
    H. Ding, R. Pen, J. Chen, et al., Effect of selenite and allitridi on the diabetic mice, Acta Nutr. Sini 19, 384–387 (1997).Google Scholar
  14. 14.
    J. Meyerovitch, Z. Farfelsn, J. Sack, et al., Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats—characterization and mode of action, J. Biol. Chem. 262, 6658–6662 (1987).PubMedGoogle Scholar
  15. 15.
    S. R. Stapleton, G. L. Garlock, L. Foellmi-Adams, et al., Selenium: potent stimulator of tyrosyl phosphorylation and activator of MAP kinase, Biochim. Biophys. Acta 1355, 259–269 (1997).CrossRefPubMedGoogle Scholar
  16. 16.
    E. A. Berg, J. Y. Wu, L. Campbell, et al., Insulin-like effects of vanadate and selenate on the expression of glucose-6-phosphate dehydrogenase and fatty acid synthase in diabetic rats, Biochimie 12, 919–924 (1995).CrossRefGoogle Scholar
  17. 17.
    C. Fürnsinn, R. Englisch, K. Ebner, et al., Insulin-like vs. non-insulin-like stimulation of glucose metabolism by vanadium, tungsten, and selenium compounds in rat muscle, Life Sci. 59, 1989–2000 (1996).CrossRefPubMedGoogle Scholar
  18. 18.
    T. S. Pillay and M. W. Makgoba, Enhancement of EGF and insulin-stimulated tyrosine phosphorylation of endogenous substrates by sodium selenate, FEBS Lett. 308, 38–42 (1992).CrossRefPubMedGoogle Scholar
  19. 19.
    Y.-J. Hei, S. Farahbakhshian, X. Chen, et al., Stimulation of MAP kinase and S6 kinase by vanadium and selenium in rat adipocytes, Mol. Cell. Biochem. 178, 367–375 (1998).CrossRefPubMedGoogle Scholar
  20. 20.
    M. Navarro-Alarcón and M. C. López-Martínez, Essentiality of selenium in the human body: relationship with different diseases, Sci. Total Environ. 249, 347–371 (2000).CrossRefPubMedGoogle Scholar
  21. 21.
    C. Ekmekcioglu, C. Prohaska, K. Pomazal, et al., Concentrations of seven trace elements in different hematological matrices in patients with type 2 diabetes as compared to healthy controls, Biol. Trace Element Res. 79, 205–219 (2001).CrossRefGoogle Scholar
  22. 22.
    C. Ruiz, A. Alegria, R. Barbera, et al., Selenium, zinc and copper in plasma of patients with type 1 diabetes mellitus in different metabolic control states, J. Trace Elements Med. Biol. 12, 91–95 (1998).Google Scholar
  23. 23.
    M. A. Beilstein and P. D. Whanger, Chemical forms of selenium in rat tissues after administration of selenite or selenomethionine, J. Nutr. 116, 1711–1719 (1986).PubMedGoogle Scholar
  24. 24.
    T. Kato, R. Read, J. Tozga, et al., Evidence for intestinal release of absorbed selenium in a form with high hepatic extraction, Am. J. Physiol. 262, G854-G858 (1992).PubMedGoogle Scholar
  25. 25.
    Y.-C. Park and P. D. Whanger, Toxicity, metabolism and absorption of selenite by isolated rat hepatocytes, Toxicology 100, 151–162 (1995).CrossRefPubMedGoogle Scholar
  26. 26.
    A. L. McCall, The impact of diabetes on the CNS, Diabetes 41, 557–570 (1992).CrossRefPubMedGoogle Scholar
  27. 27.
    A. D. Mooradian, Diabetic complications of the central nervous system, Endocr. Rev. 9, 346–356 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    C. Chen and H. Xu, Study on the relationship of concentration of selenium biological effect and oxygen free radical by chemical system, Acta Nutr. Sini. 18, 57–60 (1996).Google Scholar
  29. 29.
    H. Xu, X. Yang, Q. Liu, et al., The signal transduction in ROS-mediated apoptosis induced by selenium compounds, Prog. Chem. 14, 305–310 (2002).Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Xi-Qun Sheng
    • 1
  • Kai-Xun Huang
    • 1
  • Hui-Bi Xu
    • 1
  1. 1.Institute of Materia MedicaHuazhong University of Science & TechnologyWuhanPeople’s Republic of China

Personalised recommendations