Biological Trace Element Research

, Volume 97, Issue 2, pp 183–194 | Cite as

Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32

  • F. A.O Camargo
  • F. M. Bento
  • B. C. Okeke
  • W. T. Frankenberger
Article

Abstract

Environmental contamination by hexavalent chromium, Cr(VI), presents a serious public health problem. This study assessed the reduction of Cr(VI) by intact cells and a cell-free extract (CFE) of an actinomycete, Arthrobacter crystallopoietes (strain ES 32), isolated from soil contaminated with dichromate. Both intact cells and CFE of A. crystallopoietes, displayed substantial reduction of Cr(VI). Intact cells reduced about 90% of the Cr(VI) added within 12 h and Cr(VI) was almost completely reduced after 24 h. The KM and Vmax of Cr(VI) bioreduction by intact cells were 2.61 µM and 0.0142 µmol/min/mg protein, respectively. Cell-free chromate reductase of the A. crystallopoietes (ES 32) reduced hexavalent chromium at a KM of 1.78 µM and a Vmax of 0.096 µmol/min/mg protein. The rate constant (k) of chromate reduction was inversely related to Cr(VI) concentration and the half-life (t1/2) of Cr(VI) reduction increased with increasing concentration. A. crystallopoietes produced a periplasmic chromate reductase that was stimulated by NADH. Results indicate that A. crystallopoietes ES 32 can be used to detoxify Cr(VI) in polluted sites, particularly in stressed environments.

Index Entries

Bioremediation bioreduction hexavalent chromium Arthrobacter crystallopoietes cell-free chromate reductase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Michel, M. Brugma, C. Aubert, et al., Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria, Appl. Microbiol. Biotechnol. 55, 95–100 (2001).PubMedCrossRefGoogle Scholar
  2. 2.
    J. McLean and T. J. Beveridge, Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate, Appl. Environ. Microbiol. 67, 1076–1084 (2001).PubMedCrossRefGoogle Scholar
  3. 3.
    M. E. Losi and W. T. Frankenberger, Chromium-resistant microorganisms isolated from evaporation ponds of a metal processing plant, Water Air Soil Pollut. 74, 405–413 (1994).Google Scholar
  4. 4.
    A. Ganguli and A. K. Tripathi, Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors, Appl. Microbiol. Biotechnol. 58, 416–420 (2002).PubMedCrossRefGoogle Scholar
  5. 5.
    M. A. Mondaca, C. L. Gonzalez, and C. A. Zaror, Isolation, characterization and expression of a plasmid encoding chromate resistance in Pseudomonas putida KT2441, Lett. Appl. Microbiol. 26, 367–371 (1998).CrossRefGoogle Scholar
  6. 6.
    A. H. Alvarez, R. Moreno-Sanchez, and C. Cervantes, Chromate efflux by means of the chrA chromate resistance protein from Pseudomonas aeruginosa, J. Bacteriol. 181, 7398–7400 (1999).PubMedGoogle Scholar
  7. 7.
    Y. S. Oh and S. C. Choi, Reduction of hexavalent chromium by Pseudomonas aeruginosa HP014, J. Microbiol. 35, 25–29 (1997).Google Scholar
  8. 8.
    P. Pattanapipitpaisal, N. L. Brown, and L. F. Macaskie, Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site, Appl. Microbiol. Biotechnol. 57, 257–261 (2001).PubMedCrossRefGoogle Scholar
  9. 9.
    P. Wang, T. Mori, K. Toda, et al., Membrane-associated chromate reductase activity from Enterobacter cloacae, J. Bacteriol. 172, 1670–1672 (1990).PubMedGoogle Scholar
  10. 10.
    D. P. Clark, Chromate reductase activity of Enterobacter aerogenes is induced by nitrite, FEMS Microbiol. Lett. 122, 233–238 (1994).PubMedCrossRefGoogle Scholar
  11. 11.
    H. Shen and Y. Wang, Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456, Appl. Environ. Microbiol. 59, 3171–3777 (1993).Google Scholar
  12. 12.
    H. Guha, K. Jayachandran, and F. Maurrasse, Kinetics of chromium (VI) reduction by a type strain Shewanella alga under different growth conditions, Environ. Pollut. 115, 209–218 (2001).PubMedCrossRefGoogle Scholar
  13. 13.
    Campos, J., M. Martinez-Pacheco, and C. Cervantes, Hexavalent-chromium reduction by a chromate-resistant Baccillus sp. strain, Antonie Leeuwenhoek 68, 203–208 (1995).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Basu, S. Bhattacharya, and A. K. Paul, Isolation and characterization of chromium-resistant bacteria from tannery effluents, Bull. Environ. Contam. Toxicol. 58, 535–542 (1997).PubMedCrossRefGoogle Scholar
  15. 15.
    M. E. Losi and W. T. Frankenberger, Chromium-resistant microorganisms isolated from evaporation ponds of a metal processing plant, Water Air Soil Pollut. 74, 405–413 (1994).Google Scholar
  16. 16.
    F. A. O. Camargo, F. M. Bento, B. C. Okeke, et al., Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate, J. Environ. Qual. 32, 1228–1233 (2003).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Das and A. L. Chandra, Chromate reduction in Streptomyces, Experientia 46, 731–733 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    S. R. Laxman and S. More, Reduction of hevalent chromium by Streptomyces griseus, Miner. Eng. 15, 831–837 (2002).CrossRefGoogle Scholar
  19. 19.
    V. Desjardin, R. Bayard, N. Huck, et al., Effect of microbial activity on the mobility of chromium in soils, Waste Manag. 22, 195–200 (2002).PubMedCrossRefGoogle Scholar
  20. 20.
    F. A. O. Camargo, B. C. Okeke, F. M. Bento, et al., Diversity of chromium-resistant bacteria isolated from soils contaminated with dichromate. Unpublished study.Google Scholar
  21. 21.
    R. Francisco, M. C. Alpoim, and P. V. Morais, Diversity of chromium-resistant and reducing bacteria in chromium contaminated activated sludge, J. Appl. Microbiol. 92, 837–843 (2002).PubMedCrossRefGoogle Scholar
  22. 22.
    R. J. Bartlett and B. R. James, Chromium, methods of soil analysis, Part 3, in Methods of Soil Analysis, Chemical Methods, D. L. Sparks, ed., ASA/SSSA, Madison, WI, pp. 683–701 (1996).Google Scholar
  23. 23.
    M. M. Bradford, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  24. 24.
    S. O. Farrell and R. T. Ranallo, Experiments in Biochemistry: A Hands on Approach, Saunders, Orlando, FL (2000).Google Scholar
  25. 25.
    C. Cervantes, J. C. Garcia, S. Devars, et al., Interactions of chromium with microorganisms and plants, FEMS Microbiol. Rev. 25, 335–347 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    J. M. Rajwade, P. B. Salunke, and K. M. Pknikar, Biochemical basis of chromate reduction by Pseudomonas mendocina, in Proceedings of the International BioHydrometallurgy Symposium, R. Amils and A. Ballester, eds., Elsevier, New York, pp. 105–114 (1999).Google Scholar
  27. 27.
    F. A. O. Camargo, B. C. Okeke, F. M. Bento, et al., In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 Induced by Cu2+, Appl. Microbiol. Biotechnol, 62, 569–573.Google Scholar
  28. 28.
    Ohtake, E. Fuji, and K. Toda, Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain Enterobacter cloacae, Environ. Technol. 11, 663–668 (1990).CrossRefGoogle Scholar
  29. 29.
    C. H. Park, B. Keyhan, B. Wielinga, et al., Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase, Appl. Environ. Microbiol. 66, 1788–1795 (2000).PubMedCrossRefGoogle Scholar
  30. 30.
    F. Abe, T. Miura, T. Nagahama, et al., Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan trench and the induction of superoxide dismutase activity by Cu2+, Biotechnol. Lett. 23, 2027–2034 (2001).CrossRefGoogle Scholar
  31. 31.
    T. Suzuki, N. Miyata, H. Horitsu, et al., NAD(P)H-dependent chromium (VI) reductase of Pseudomonas ambigua G-1: a Cr(VI) intermediate is formed during the reduction of Cr(VI) to Cr(III), J. Bacteriol. 174, 5340–5345 (1992).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • F. A.O Camargo
    • 1
  • F. M. Bento
    • 1
  • B. C. Okeke
    • 1
  • W. T. Frankenberger
    • 1
  1. 1.Department of Environmental ScienceUniversity of CaliforniaRiverside

Personalised recommendations