Biological Trace Element Research

, Volume 97, Issue 1, pp 95–104 | Cite as

Effect of selenium depletion and supplementation on the kinetics of type 1 5′-iodothyronine deiodinase and T3/T4 in rats

  • Sanjiv Dhingra
  • Uma Singh
  • M. P. Bansal


Presently, the effect of selenium (Se) deficiency and excess of Se (1 ppm) on the activity of selenoenzymes type 1 5′-iodothyronine deiodinase (5′-DI), glutathione peroxidase (GSH-Px), and level of thyroid hormones (T3 and T4) was studied in rats. Se levels in the serum and liver, T3 and T4 in the serum, GSH-Px levels in the liver, and 5′-DI activity in the liver/aorta/thyroid were estimated after 1, 2, and 3 mo of Se-deficient (0.02 ppm), Se-adequate (0.2 ppm), and Se-excess (1 ppm) diet feeding. All of these parameters decreased significantly in the Se-deficient group as compared to the adequate group. Within the deficient group, as the Se deficiency progressed, all of the parameters except 5′-DI decreased after 2 and 3 mo in comparison to 1-mo data. Thyroidal 5′-DI activity in Se deficiency showed the maximum increase. A significant increase was observed in all of the above parameters in the 1 ppm Se-supplemented diet group when compared with the adequate Se group; also, as the Se deposition increased within the Se-excess diet group, a significant increase was observed in all of the above parameters. However, as observed by others, the intake of excess of Se (i.e., 2 ppm in the diet) did not elevate the activities of selenoenzymes and thyroid hormones; rather, it had adverse effects. The present study concludes that Se supplementation at least up to 1 ppm enhances the selenoenzyme activities, and above this level, it may not be considered as an indicator of selenoenzyme activities.

Index Entries

Selenium 5′-DI GSH-Px T3/T4 selenoenzymes selenoproteins deficiency supplementation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. J. Backett, S. E. Beddows, P. C. Morrice, et al., Inhibition of hepatic deiodination of thyroxine caused by selenium deficiency in rats, Biochem. J. 248, 443–447 (1987).Google Scholar
  2. 2.
    R. Boyne and J. R. Arthur, An in vivo and in vitro study of selenium deficiency and infection in rats, J. Comp. Pathol. 96, 379–386 (1986).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Boyne and J. R. Arthur, The response of selenium deficient mice to Candida albicans infection, J. Nutr. 116, 816–822 (1986).PubMedGoogle Scholar
  4. 4.
    J. R. Arthur, F. Nicol, R. Boyne, et al., Old and new roles for selenium, in Trace Substances in Environmental Health XXI, D. D. Hemphill, ed., University of Missouri Press, Columbia, OH, pp. 487–488 (1987).Google Scholar
  5. 5.
    J. R. Arthur and G. J. Backett, Selenium deficiency and thyroid hormone metabolism, in Selenium in Biology and Medicine, A. Wendel, ed., Springer-Verlag Heidelberg, pp. 90–105 (1989).Google Scholar
  6. 6.
    J. Palmblad, U. Adamson, U. Rosenqvist, et al., Neutrophil function in hypothyroid patients, Acta Med. Scand. 210, 287–291 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    P. D. Whanger and J. A. Butler, Effects of various dietary levels of selenium as selenite or selenomethionine on tissue selenium levels and glutathione peroxidase activity in rats, J. Nutr. 118, 846–852 (1988).PubMedGoogle Scholar
  8. 8.
    C. Ip and C. Hayes, Tissue selenium levels in selenium supplemented rats and their relevance in mammary cancer protection, Carcinogenesis 10, 921–925 (1989).PubMedGoogle Scholar
  9. 9.
    J. R. Arthur, F. Nicol, and G. J. Beckett, Hepatic iodothyronine deiodinase: the role of selenium, Biochem. J. 272, 537–540 (1990).PubMedGoogle Scholar
  10. 10.
    D. Behne, G. Kyriakopoulos, H. Meinhold, et al., Identification of type-1 iodothyronine 5′-deiodinase as a selenoenzyme, Biochem. Biophys. Res. Commun. 173, 1143–1149 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    M. J. Berry, L. Banu, and P. R. Larsen, Type-1 iodothyronine deiodinase is a selenocysteine containing enzyme, Nature (London) 349, 438–340 (1991).CrossRefGoogle Scholar
  12. 12.
    S. J. Mendel, M. J. Berry, J. D. Keiffer, et al., Cloning and in vitro expression of the human selenoprotein, type-1 iodothyronine deiodinase, J. Clin. Endocrinol. Metab. 75, 1133–1139 (1992).CrossRefGoogle Scholar
  13. 13.
    S. G. Beech, S. W. Walker, G. J. Beckett, et al., Effect of selenium depletion on thyroidal type-1 iodothyronine deiodinase activity in isolated human thyrocytes and rat thyroid and liver, Analyst 120, 827–831 (1995).PubMedCrossRefGoogle Scholar
  14. 14.
    P. Laurberg, Mechanisms governing the relative proportions of thyroxine and 3,5,3′-triiodothyronine in thyroid secretion, Metab. Clin. Exp. 33, 379–392 (1984).PubMedGoogle Scholar
  15. 15.
    H. Ishii, M. Inada, K. Tanaka, et al., Induction of outer and inner ring monodeiodinases in human thyroid gland by thyrotropin, J. Clin. Endocrinol. Metab. 57, 500–505 (1983).PubMedGoogle Scholar
  16. 16.
    S. Vadhanvikit and H. E. Ganther, Selenium requirements of rats for normal hepatic and thyroidal 5′-deiodinase (type-I) activities, J. Nutr. 123, 1124–1128 (1993).Google Scholar
  17. 17.
    R. F. Burk, Production of selenium deficiency in the rat, Methods Enzymol. 143, 307–313 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    R. Hasunuma, T. Ogawi, and Y. Kawaniska, Fluorimetric determination of selenium in nanogram amounts in biological materials using 2,3-diaminonapthalene, Anal. Biochem. 126, 242–245 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    D. E. Paglia and W. N. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab. Clin. Med. 70, 158–168 (1967).PubMedGoogle Scholar
  20. 20.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, et al., Protein measurement with Folin-phenol reagent, J. Biol. Chem. 193, 265–275 (1951).PubMedGoogle Scholar
  21. 21.
    G. J. Backett, D. A. Macdougall, F. Nicol, et al., Inhibition of type-I and type-II iodothyronine deiodinase activity in rat liver, kidney and brain produced by selenium deficiency, Biochem. J. 259, 887–892 (1989).Google Scholar
  22. 22.
    J. R. Arthur, F. Nicol, P. W. H. Rae, et al., Effects of selenium deficiency on the thyroid gland and on plasma and pituitary thyrotropin and growth hormone concentrations in the rat Clin. Chem. Enzyme Commun. 3, 209–214 (1990).Google Scholar
  23. 23.
    D. Behne, H. Hilmert, H. Schied, et al., Evidence for specific selenium target tissues and new biologically important selenoprteins, Biochem. Biophys. Acta 966, 12–21 (1988).PubMedGoogle Scholar
  24. 24.
    D. Behne and A. Kyariakopoulos, Effects of dietary selenium on the tissue concentrations of type-I iodothyronine deiodinase and other selenoproteins, Am. J. Clin. Nutr. 57(Suppl.), 310S-312S (1993).PubMedGoogle Scholar
  25. 25.
    M. Oertel, M. Gross, H. Rokos, et al., Selenium dependent regulation of type-I 5′-deiodinase expression, Am. J. Clin. Nutr. 57(Suppl.), 313S-314S (1993).PubMedGoogle Scholar
  26. 26.
    H. Meinhold, A. Campos-Barros, B. Walzog, et al., Effects of selenium and iodine deficiency on type-I, type-II and type-III iodothyronine deiodinases and circulating hormone levels in the rat, Exp. Clin. Endocrinol. 100, 87–93 (1993).CrossRefGoogle Scholar
  27. 27.
    J. P. Chanoine, M. Safran, A. P. Farewell, et al., Selenium deficiency and type-II 5′-deiodinase regulation in the euthyroid and hypothyroid rat: evidence of a direct effect of thyroxine, Endocrinology 130, 479–484 (1992).CrossRefGoogle Scholar
  28. 28.
    J. M. Bates, V. L. Spate, J. S. Morris, et al., Effects of selenium deficiency on tissue selenium content, deiodinase activity and thyroid hormone economy in the rat during development, Endocrinology 141, 2490–2500 (2000).PubMedCrossRefGoogle Scholar
  29. 29.
    A. C. Guyton, Textbook of Medical Physiology, 8th ed. W. B. Saunders, Philadelphia (1991).Google Scholar
  30. 30.
    G. J. Backett, F. Nicol, P. W. H. Rae, et al., Effects of combined iodine and selenium deficiency on thyroid hormone metabolism, in rats, Am. J. Nutr. 57(Suppl.), 240S-243S (1993).Google Scholar
  31. 31.
    A. Pizzulli and A. Ranjbar, Selenium deficiency and hypothyroidism: a new etiology in differential diagnosis of hypothyroidism in children, Biol. Trace Element Res. 77, 199–208 (2000).CrossRefGoogle Scholar
  32. 32.
    P. Toy, S. Hatfield, R. Bull, et al., The effects of different levels of selenium administered to rats in drinking water on distribution and glutathione peroxidase, Res. Commun. Chem. Pathol. Pharmacol. 21, 115–131 (1978).PubMedGoogle Scholar
  33. 33.
    D. Behne, A. Kyriakopoulos, H. Gessner, et al., Type-I iodothyronine deiodinase activity after high selenium intake and relations between selenium and iodine metabolism in rats, J. Nutr. 122, 1542–1546 (1992).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Sanjiv Dhingra
    • 1
  • Uma Singh
    • 1
  • M. P. Bansal
    • 1
  1. 1.Department of BiophysicsPunjab UniversityChandigarhIndia

Personalised recommendations