Biological Trace Element Research

, Volume 96, Issue 1–3, pp 227–236 | Cite as

Effects of zinc deficiency and supplementation on the glycogen contents of liver and plasma lactate and leptin levels of rats performing acute exercise

  • Abdülkerim Kasim Baltaci
  • Kursat Ozyurek
  • Rasim Mogulkoc
  • Erdal Kurtoglu
  • Yasemin Ozkan
  • Ilhami Celik


The aim of the present study was to investigate how zinc (Zn) deficiency and supplementation affect glycogen content of the liver and plasma lactate and leptin levels of rats performing acute swimming exercise just before the blood samples were obtained. Four sets of 10 rats each served as the (1) Zn-deficient group, (2) Zn-supplemented group, (3) swimming controls, and (4) normal controls. Plasma lactate levels of Zn-deficient animals were significantly higher than those in the other three groups (p<0.01), and those in the swimming controls (group 3) were significantly higher than in the Zn-supplemented animals, group 2 (p<0.01). The plasma glucose of the Zn-deficient group was significantly higher than all other groups (p<0.01) and that of group 2 was significantly lower than group 4 (p<0.01). Glycogen levels in liver of the Zn-deficient animals was significantly lower than groups 2 and 4 (p<0.01), and, in turn, were higher than for group 3 (p<0.01). The plasma leptin and Zn levels of group 1 were significantly lower than in all other groups (p<0.01). These results suggest that Zn deficiency exerts a negative influence in the above-mentioned parameters and that Zn supplementation has the opposite effect.

Index Entries

Exercise glycogen lactate leptin swimming zinc 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Dressenderfor, C. E. Wade, C. L. Keen, et al., Plasma mineral levels in marathon runners during a 20-day road race, Phys. Sportsmed. 10, 113–118 (1982).Google Scholar
  2. 2.
    A. Cordova, Variations in serum iron and fatigue levels after elective abdominal, Surg. Med. Sci. Res. 20, 119–120 (1992).Google Scholar
  3. 3.
    G. Haralambie, Serum zinc in athletes in training, Int. J. Sports Med. 2, 135–138 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    F. Couzy, P. Lafargue, and C. Y. Guezennec, Zinc metabolism in the athlete: influence of training nutrition and other factors, Int. J. Sports. Med. 11, 263–266 (1990).PubMedGoogle Scholar
  5. 5.
    S. Khaled, J. F. Brun, G. Cassanas, et al., Effects of zinc supplementation on blood rheology during exercise, Clin. Hemorheol. Microcirc. 20, 1–10 (1999).PubMedGoogle Scholar
  6. 6.
    A. Cordova and M. Alvarez-Mon, Behaviour of zinc in physical exercise: a special reference to immunity and fatigue, Neurosci. Biobehav. Rev. 19, 439–445 (1995).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Cordova and F. J. Navas, Effect of training on zinc metabolism: changes in serum and sweat zinc concentrations in sportsmen, Ann. Nutr. Metab. 42, 274–282 (1998).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Moschos, J. L. Chan, and C. S. Mantzoros, Leptin and reproduction, Fertil. Steril. 77, 433–44 (2002).PubMedCrossRefGoogle Scholar
  9. 9.
    H. F. Mangian, R. G. Lee, G. L. Paul, et al., Zinc deficiency suppresses plasma leptin concentrations in rats, J. Nutr. Biochem. 9, 47–51 (1998).CrossRefGoogle Scholar
  10. 10.
    C. S. Mantzoros, A. S. Prasad, F. W. J. Beck, et al., Zinc may regulate serum leptin concentrations in humans, J. Am. Coll. Nutr. 17, 270–275 (1998).PubMedGoogle Scholar
  11. 11.
    M. D. Chen, Y. M. Song, and P. Y. Lin, Zinc may be a mediator of leptin production in humans, Life Sci. 66, 2143–2149 (2000).PubMedCrossRefGoogle Scholar
  12. 12.
    C. Pagano, M. Marzolo, M. Granzotto, et al., Acute effects of exercise on circulating leptin in leal and genetically obese fa/fa rats, Biochem. Biophys. Res. Commun. 255, 698–702 (1999).PubMedCrossRefGoogle Scholar
  13. 13.
    J. S. Fisher, R. E. Van-Pelt, O. Zinder, et al., Acute exercise effect on post absorptive serum leptin, Eur. J. Appl. Physiol. 91, 680–686 (2001).Google Scholar
  14. 14.
    M. Zaccaria, A. Ermolao, S. Roi, et al., Leptin reduction after endurance races differing in duration and energy expenditure, Eur. J. Appl. Physiol. 87, 108–111 (2002).PubMedCrossRefGoogle Scholar
  15. 15.
    C. S. Bediz, A. K. Baltac, A. M. Tiftik, et al., Effects of zinc deficiency on some hormones in rats, Selcuk J. Med. 15, 59–63 (1999).Google Scholar
  16. 16.
    A. K. Baltac, N. Ergene, A. Ates, et al., Serum zinc levels and effect of zinc supplementation on cellular immunity in experimentally induced Toxoplasma gondii infections, J. Turgut Ozal Med. Center 2, 130–134 (1995).Google Scholar
  17. 17.
    D. Hopwood, Fixation and fixatives, in The Theory and Practice of Histological Techniques, J. D. Bancroft and A. Stevens, eds., Bath Press, Avon, pp. 21–43 (1990).Google Scholar
  18. 18.
    H. C. Cook, Carbohydrates, in The Theory and Practice of Histological Techniques, J. D. Bancroft and A. Stevens, eds., Bath Press, Avon, pp. 177–213 (1990).Google Scholar
  19. 19.
    P. J. Fraker, R. Caruso, and F. Kierszenbaum, Alteration in the immune and nutritional status of mice by synergy between zinc deficiency and infection with Trypanosoma cruzi, J. Nutr. 112, 1224–1229 (1982).PubMedGoogle Scholar
  20. 20.
    S. S. Kutti and J. Kutti, Zinc supplementation in anorexia nervosa, Am. J. Clin. Nutr. 44, 581–582 (1986).PubMedGoogle Scholar
  21. 21.
    S. Khaled, J. F. Brun, J. P. Micallel, et al., Serum zinc and blood rheology in sportsmen (football players), Clin. Hemorheol. Microcirc. 17, 47–58 (1997).PubMedGoogle Scholar
  22. 22.
    G. Gold and G. M. Grodsky, Kinetic aspects of comparrmental storage and secretion of insulin and zinc, Experientia 40, 1105–1114 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    R. C. Noland, J. T. Baker, S. R. Boudreau, et al., Effect of intense training on plasma leptin in male and female swimmers, Med. Sci. Sports. Exerc. 33, 227–231 (2001).PubMedGoogle Scholar
  24. 24.
    I. Karamouzis, M. Karamouzis, I. S. Vrabas, et al., The effects of marathon swimming on serum leptin and plasma neuropeptide Y levels, Clin. Chem. Lab. Med. 40, 132–136 (2002).PubMedCrossRefGoogle Scholar
  25. 25.
    M. S. Hickey and D. J. Calsbeek, Plasma leptin and exercise: recent findings, Sports Med. 31, 583–589 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Gleeson and N. C. Bishop, Elite athlete immunology: importance of nutrition, Int. J. Sports. Med. 1, 44–50 (2000).CrossRefGoogle Scholar
  27. 27.
    H. C. Lukaski, Magnesium, zinc, and chromium nutriture and physical activity, Am. J. Clin. Nutr. 72, 585–593 (2000).Google Scholar
  28. 28.
    A. Singh, D. A. Papanicolaou, L. L. Lawrence, et al., Neuroendocrine responses to running in women after zinc and vitamin E supplementation, Med. Sci. Sports Exerc. 31, 536–542 (1999).PubMedCrossRefGoogle Scholar
  29. 29.
    J. F. Brun, C. Dieu-Cambrezy, A. Charpiat, et al., Serum zinc in highly trained adolescent gymnasts, Biol. Trace. Element Res. 471, 373–378 (1995).Google Scholar
  30. 30.
    M. K. Song, I. K. Hwang, M. J. Rosenthal, et al., Antidiabetic actions of arachidonic acid and zinc in genetically diabetic Goto-Kakizaki rats, Metabolism 52, 7–12 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Abdülkerim Kasim Baltaci
    • 1
  • Kursat Ozyurek
    • 3
  • Rasim Mogulkoc
    • 1
  • Erdal Kurtoglu
    • 2
  • Yasemin Ozkan
    • 4
  • Ilhami Celik
    • 4
  1. 1.Department of PhysiologySelçuk UniversityKonyaTurkey
  2. 2.Department of Hematology, Meram Medical SchoolSelçuk UniversityKonyaTurkey
  3. 3.Department of Gymnastics SchoolSelçuk UniversityKonyaTurkey
  4. 4.Department of Histology, Veterinary SchoolSelçuk UniversityKonyaTurkey

Personalised recommendations