Biological Trace Element Research

, Volume 95, Issue 1, pp 49–63 | Cite as

Variation in the distribution of trace elements in hepatoma

  • Hiraku Tashiro
  • Toshihiro Kawamoto
  • Toshiteru Okubo
  • Osamu Koide


There are many reports of reduction of zinc level and rise of copper level in serum of patients with liver disease. However, there are a few reports that compare the trace elements in tumor tissues and nontumor tissues of the liver with hepatoma.

We studied trace element distribution in tumor tissues and nontumor tissues of liver with hepatoma and compared them with data from normal liver tissues. Zinc (Zn), copper (Cu), selenium (Se), cadmium (Cd), mercury (Hg), and iron (Fe) were chosen as the trace elements to be observed.

We observed falls of Zn, Cd, and Hg levels in tumor tissues and the rise of Cu level as a result of this investigation. Zn, Cd, and Hg levels in tumor tissues were significantly lower than those in nontumor tissues and Zn, Cd, and Hg levels in nontumor tissues were significantly lower than in normal liver tissues. This tendency was clearer for Cd and Hg than for Zn. Although the distribution of Cu was not significant, a distribution contrary to that of Zn was shown.

These findings indicate that the distribution of Zn, Cd, and Hg can serve as supportive evidence that could be useful as a tumor marker. Selenium showed almost the same accumulation tendency among tumor tissues, nontumor tissues, and normal livers. Although correlation was observed among most metals in the normal liver, there was almost no correlation in tumor tissues.

Index Entries

Hepatoma zinc copper copper/zinc ratio selenium cadmium mercury iron humans trace elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Tashiro and T. Okubo, Distribution of cadmium, copper and zinc in human liver and kidney, Biomed. Res. Trace Elements 13(1), 56–64 (2002).Google Scholar
  2. 2.
    U. B. Dogan, M. Cindoruk, S. Dumlu, et al., Diagnostic value of serum copper, zinc and plasma fibrinogen in cirrhotic patients with and without hepatocellular carcinoma, Ital. J. Gastroenterol. Hepatol. 29, 476 (1997).PubMedGoogle Scholar
  3. 3.
    N. Nagasue, H. Kohno, Y. Chang, et al., Iron, copper and zinc levels in serum and cirrhotic liver of patients with and without hepatocellular carcinoma, Oncology 46, 293–296 (1989).PubMedGoogle Scholar
  4. 4.
    G. N. Schrauzer, Selenium and breast cancer, J. Am. Med. Assoc. 265(1), 28 (1991).CrossRefGoogle Scholar
  5. 5.
    F. Nomura and K. Takekoshi, Zinc and selenium metabolism in liver cirrhosis, Jpn. J. Clin. Med. 52(1), 165–169 (1994) (in Japanese).Google Scholar
  6. 6.
    B. L. Vallee, W.E.C. Wacker, A. E. Bartholomay, et al., Zinc metabolism in hepatic dysfunction, Ann. Intern. Med. 50, 1077–1091 (1959).PubMedGoogle Scholar
  7. 7.
    M. F. Rodriguez, R. E. Gonzalez, F. F. Santolaria, et al., Zinc, copper, manganese, and iron in chronic alcoholic liver disease, Alcohol 14(1), 39–44 (1997).CrossRefGoogle Scholar
  8. 8.
    J. Solis-Herruzo, B. De-Cuenca, and M. C. Munoz-Rivero, Intestinal zinc absorption in cirrhotic patients, J. Gastroenterol. 27, 335–338 (1989).Google Scholar
  9. 9.
    K. Suzuki, R. Oyama, E. Hayashi, and Y. Arakawa, Liver diseases and essential trace elements, Nippon Rinsho 54(1), 85–92 (1996) (in Japanese).PubMedGoogle Scholar
  10. 10.
    S. Takikawa, Changes in serum Zn, Cu, Se, and Mn levels in patients with chronic liver diseases and hepatocellular carcinoma, J. Clin. Biochem. Nutr. 8, 153–164 (1990).Google Scholar
  11. 11.
    Y. Mimata, S. Ujiie, T. Himori, and A. Wakui, Serum copper and the copper: zinc ratio in patients with gastric cancer, Jpn. J. Cancer Clin. 32(12), 1533–1539 (1986) (in Japanese).Google Scholar
  12. 12.
    H. Tashiro, Unpublished data.Google Scholar
  13. 13.
    S. Chen, Hypozincemia in compensated cirrhotic patients, Yokohama Med. J. 42, 307–314 (1991) (in Japanese).Google Scholar
  14. 14.
    W. DeWys and W. Pories, Inhibition of a spectrum of animal tumors by dietary zinc deficiency, J. Natl. Cancer. Inst. 48, 375–381 (1972).PubMedGoogle Scholar
  15. 15.
    J. L. Phillips and P. J. Sheridan, Effect of zinc administration on growth of L1210 and BW5147 tumors in mice, J. Natl. Cancer. Inst. 57, 361–363 (1976).PubMedGoogle Scholar
  16. 16.
    C. J. McClain, L. Adams, and S. Shedlofsky, Zinc and the gastrointestinal system, in Essential and Toxic Elements in Health and Disease, A. S. Prasad, ed., Liss, New York, pp. 55–73 (1988).Google Scholar
  17. 17.
    K. Griffith, E. B. Wright, and T. L. Dormandy, Tissue zinc in malignant disease, Nature 241, 60 (1973).PubMedCrossRefGoogle Scholar
  18. 18.
    M. C. Kew and R. C. Mallett, Hepatic zinc concentrations in primary cancer of liver, Br. J. Cancer 29, 80–83 (1974).PubMedGoogle Scholar
  19. 19.
    S. Ujiie, Y. Itoh, H. Kikuchi, and A. Wakui, Zinc distribution in malignant tumors, Biomed. Res. Trace Elements 6(1), 45–50 (1995).Google Scholar
  20. 20.
    Y. Yazaki, Hepatic copper concentrations in various liver diseases, Acta Hepatol. Japon. 25(10), 34–46 (1984) (in Japanese).Google Scholar
  21. 21.
    I. Sternlieb, Copper and the liver, Gastroenterology 78, 1615–1628 (1980).PubMedGoogle Scholar
  22. 22.
    H. S. Dang and S. Somasundaran, Copper levels in Indian childhood cirrhosis, Lancet ii, 246 (1979).Google Scholar
  23. 23.
    M. Diez, F. J. Cerdan, M. Arroyo, and J. L. Balibrea, Use of the copper/zinc ratio in the diagnosis of lung cancer, Cancer 63, 726–730 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    J. A. Garofalo, H. Ashikari, M. L. Lesser, et al., Serum zinc, copper, and the Cu/Zn ratio in patients with benign and malignant breast lesions, Cancer 46, 2682–2685 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    I. Shah-Reddy, P. Khilanani, and C. R. Bishop, Serum copper levels in non-Hodgkin’s lymphoma, Cancer 45, 2156–2159 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    O. Miatto, M. Casaril, G. B. Gabrielli, N. Nicoli, G. Bellisola, and R. Corrocher, Diagnostic and prognostic value of serum copper and plasma fibrinogen in hepatic carcinoma, Cancer 55, 774–778 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    Y. Arakawa, K. Suzuki, K. Suzuki, Y. Matsuo, and S. Takeuchi, Liver diseases and trace elements, Saishin-Igaku 4, 668–677 (1990) (in Japanese).Google Scholar
  28. 28.
    A. Ozawa, Y. Hatta, and G. Matsumura, Studies on human hepatic copper contents in Japanese patients with liver cirrhosis, J. Jpn. Soc. Intern. Med. 73(7), 925–934 (1984) (in Japanese).Google Scholar
  29. 29.
    H. Oyama, Trace elements: mechanistic aspects of anticararcinogenic action, Nippon Rinsho 54(1), 52–58 (1996) (in Japanese).Google Scholar
  30. 30.
    J. T. Salone, G. Alfthan, J. K. Huttunen, and P. Puska, Association between serum selenium and the risk of cancer, Am. J. Epidemiol. 120, 342–349 (1984).Google Scholar
  31. 31.
    W. C. Willett, B. F. Polk, J. S. Morris, et al., Prediagnostic serum selenium and risk of cancer, Lancet 16, 130–134 (1983).CrossRefGoogle Scholar
  32. 32.
    S. Y. Yu, Y. J. Zhu, and W. G. Li, Protective role of selenium against hepatitis B virus and primary liver cancer in Qidong, Biol. Trace Element Res. 56, 117–124 (1997).Google Scholar
  33. 33.
    S. Y. Yu, P. Ao, L. M. Wang, et al., Biochemical and cellular aspects of the anticancer activity of selenium, Biol. Trace Element Res. 15, 243–255 (1988).Google Scholar
  34. 34.
    D. Kromhout, Essential micronutrients in relation to carcinogenesis, Am. J. Clin. Nutr. 45, 1361–1367 (1987).PubMedGoogle Scholar
  35. 35.
    M. Kabuto, H. Imai, C. Yonezawa, et al., Prediagnostic serum selenium and zinc levels and subsequent risk of lung and stomach cancer in Japan, Cancer Epidemiol. Biomarkers Prev. 3, 465–469 (1994).PubMedGoogle Scholar
  36. 36.
    T. Yazaki, T. Iizumi, H. Tomomasa, H. Amemiya, and S. Oshio, Study of multi-elements in renal cancer tissue, Nishinihon J. Urol. 51(5), 1475–1479 (1989) (in Japanese).Google Scholar
  37. 37.
    A. Feustel, R. Wennrich, and M. Dittrich, Studies of Cd, Zn and Cu levels in human kidney tumours and normal kidney, Urol. Res. 14, 105–108 (1986).PubMedCrossRefGoogle Scholar
  38. 38.
    Z. A. Karcioglu, R. M. Sarper, H. A. Van Rinsvelt, J. A. Guffey, and R. W. Fink, Trace element concentrations in renal cell carcinoma, Cancer 42, 1330–1340 (1978).PubMedCrossRefGoogle Scholar
  39. 39.
    Y. Deugnier and B. Turlin, Iron and hepatocellular carcinoma, J. Gastroenterol. Hepatol. 16(5), 491–494 (2001).PubMedCrossRefGoogle Scholar
  40. 40.
    C.E.G. Robinson, D. N. Bell, and J. H. Sturdy, Possible association of malignant neoplasma with iron-dextran. A case report, Br. Med. J. 27, 648–650 (1960).Google Scholar
  41. 41.
    A. E. MacKinnon and J. Bancewicz, Sarcoma after injection of intramuscular iron, Br. Med. J. 5, 277–279 (1973).CrossRefGoogle Scholar
  42. 42.
    T. H. Bothwell, and C. Isaacson, Siderosis in the Bantu: a comparison of the incidence in males and females, Br. Med. J. 24, 522–524 (1962).Google Scholar
  43. 43.
    T. Oyama, K. Matsuno, T. Kawamoto, T. Mitsudomi, T. Shirakusa, and Y. Kodama, Efficiency of serum copper/zinc ratio for differential diagnosis of patients with and without lung cancer, Biol. Trace Element Res. 42, 115–127 (1994).Google Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  • Hiraku Tashiro
    • 1
  • Toshihiro Kawamoto
    • 1
  • Toshiteru Okubo
    • 1
  • Osamu Koide
    • 1
  1. 1.Occupational Health Training CenterUniversity of Occupational and Environmental HealthKitakyushuJapan

Personalised recommendations